
Introduction to Markov Decision Processes

Martin L. Puterman and Timothy C. Y. Chan

February 17, 2022

Chapter 4

Finite Horizon Models

This material will be published by Cambridge University Press as Intro-
duction to Markov Decision Processes by Martin L. Puterman and Timo-
thy C. Y. Chan. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale, or use in derivative
works. ©Martin L. Puterman and Timothy C. Y. Chan, 2021.

We welcome all feedback and suggestions at:
martin.puterman@sauder.ubc.ca and tcychan@mie.utoronto.ca

“Begin at the beginning,” the King said, very gravely, “and go on till you come to the
end: then stop.”

Lewis Carroll, Alice in Wonderland, 1832-1898

In this chapter, we focus on models in which the planning horizon, N , is finite
and fixed, and decision makers evaluate policies on the basis of their expected total
reward. By a fixed horizon length, we mean that the decision maker has pre-specified
the number of decision epochs in the planning horizon. We distinguish this situation
from models in which the planning horizon length has finite expected length but its
actual length may vary from realization to realization, or possibly be unbounded. In
such settings, the realized horizon length may depend on the actions of a decision
maker such as in the the clinical decision making problem (Section 3.5) or the Grid
World example (Section 3.7). Note it is often possible to convert a variable horizon
length problem with bounded total length into a fixed horizon problem by introducing
a zero-reward absorbing state. An example of this transformation is given in the case
study in Section 10.3.2.

Recall that a policy π is a sequence of decision rules (d1, d2, . . . , dN−1) that deter-
mines an action choice at each decision epoch n, n = 1, . . . , N − 1 either deterministi-
cally or stochastically. Although policies can be quite general (recall the taxonomy in

78

CHAPTER 4. FINITE HORIZON MODELS 79

Chapter 2), Section 2.4 showed that in the special case of a one-period problem there
always exists a Markovian deterministic policy that is optimal. It turns out that this
result holds in the general finite horizon setting under mild assumptions, such as when
S is finite and As is finite for all s ∈ S. Thus, in this chapter, much of our exposition
is based on Markovian deterministic policies.

The results in this chapter, while important in their own right for the analysis of
finite horizon models, also motivate the analysis of infinite horizon models in later
chapters. In particular, this chapter introduces the following fundamental concepts:

• Value of a policy

• Optimality equations

• Backward induction or dynamic programming

• Existence of optimal policies

• Optimality of structured policies.

4.1 The Expected Total Reward of a Policy

4.1.1 The Value of a Policy

We define the value of a policy π = (d1, d2, . . . , dN−1) ∈ ΠHR in the finite horizon
setting under the expected total reward criterion to be

vπ(s) = Eπ

[
N−1∑
n=1

rn(Xn, Yn, Xn+1) + rN(XN)

∣∣∣∣X1 = s

]
(4.1)

for each s ∈ S, where Xn is the system state and Yn is the action chosen at decision
epoch n. Recall that if the policy is deterministic, then Yn becomes dn(Xn). To compute
vπ(s), we introduce the concept of forward and backward recursions. Equation (4.1)
holds for all classes of policies but the precise equations for computing the value differs
between classes of policies under consideration. In Section 4.1.3 we provide a recursion
for evaluating a Markovian deterministic policy and in Section 4.1.4 we provide a
recursion for evaluating a history-dependent randomized policy.

4.1.2 Forward and Backward Recursions

Here, we compare two basic recursions underlying the analysis of finite horizon Markov
decision processes. Let vπn(s) be the expected total reward obtained using policy π,
starting in state s, from decision epoch n to the end of the planning horizon. That is,

vπn(s) := Eπ

[
N−1∑
i=n

ri(Xi, Yi, Xi+1) + rN(XN)

∣∣∣∣Xn = s

]
(4.2)

CHAPTER 4. FINITE HORIZON MODELS 80

is the expected total reward in an N − n period problem that starts at state s at
decision epoch n. In this notation, it follows that the expected total reward of policy
π, vπ(s), is equal to vπ1 (s). It is straightforward to see that vπ1 can be written in terms
of vπ2 :

vπ1 (s) = Eπ[r1(X1, Y1, X2) +
N−1∑
n=2

rn(Xn, Yn, Xn+1) + rN(XN)
∣∣X1 = s]

= Eπ[r1(X1, Y1, X2) + vπ2 (X2)
∣∣X1 = s].

(4.3)

In other words, the value of policy π = (d1, . . . , dN−1) is the expected reward obtained
by choosing action Y1, determined by decision rule d1 in epoch 1 in state s, plus the
expected total reward from epoch 2 in state X2 to the end of the planning horizon,
using decision rules d2, . . . , dN−1. State X2 is random since it is determined by the
probability transitions out of state s when decision rule d1 is applied. Note that the
relationship in (4.3) is valid for any pair of successive decision epochs. Indeed, for a
general n ∈ {1, . . . , N − 1}, if we define vπN(XN) := rX(XN), then we can write vπn(s)
as

vπn(s) = Eπ[rn(Xn, Yn, Xn+1) +
N−1∑
i=n+1

ri(Xi, Yi, Xi+1) + rN(XN)
∣∣Xn = s]

= Eπ[rn(Xn, Yn, Xn+1) + vπn+1(Xn+1)
∣∣Xn = s].

(4.4)

Since the quantity vπn(s) represents the expected total reward from decision epoch n
onward, it is often referred to as the cost-to-go function when the rewards represent
costs.

The idea of starting at vπ1 and then proceeding to vπ2 and so on using equations
(4.4) is called a forward recursion because we think about the value at decision epoch
n as depending on the value at the next decision epoch n+ 1. Forward recursions will
be useful for deriving certain analytical representations, but cannot be used directly
for computation because at decision epoch n, we do not yet know the value at epoch
n+ 1.

In contrast to forward recursion, backward recursion uses the same recursive rela-
tionship (4.4) but in the reverse order. That is, we start at the end of the planning
horizon and work backwards to the first decision epoch. Backward recursions will be
the basis for calculations.

Writing (4.4) for n = N − 1, we have

vπN−1(s) = Eπ[rN−1(XN−1, YN−1, XN) + vπN(XN)|XN−1 = s]

= Eπ[rN−1(XN−1, YN−1, XN) + rN(XN)|XN−1 = s].
(4.5)

Since we know both expressions inside the expectation, we can evaluate vπN−1(s). With
vπN−1(s) for all s ∈ S readily computable, we can repeat the above process to evaluate
vπN−2(s) and so forth. Computing vπn(·) for n = 1, 2, . . . , N − 1 in this way is the

CHAPTER 4. FINITE HORIZON MODELS 81

basis for the calculations in the next section and in many later parts of the book.
Notice that this computation builds on the one-period model from Section 2.4, which
presents a simple method to compute an optimal action in a given decision epoch,
assuming that the next epoch provides the terminal reward. Equation (4.5) is exactly
equation (2.31) when we set N = 2. Recall that in the one-period model, Markovian
and history-dependent policies are the same. In general, we use Yn to distinguish the
history-dependent case with a probability distribution over actions versus dn(Xn) to
indicate a deterministic mapping from state Xn to a specific action dn(Xn).

4.1.3 Evaluating a Markovian deterministic policy

We now show how to compute the value of a Markovian deterministic policy π =
(d1, d2, . . . , dN−1) and illustrate the computation with an example. Since a Markovian
deterministic policy generates a Markov reward process (Section 2.2.4), the calculations
also apply to any Markov reward process. The idea is to break down an (N−1)-period
problem into a sequence of N−1 one-period problems identical to those in Section 2.4.
The computations can be summarized as follows.

Algorithm 4.1: The Finite Horizon Policy Evaluation Algorithm for Marko-
vian Deterministic Policies
1 Choose π = (d1, . . . , dN−1) ∈ ΠMD. Set n = N and uN(s) = rN(s) for all s ∈ S.
2 while n > 1 do
3 n← n− 1
4 for s ∈ S do
5 Evaluate un(s) according to

un(s) =
∑
j∈S

pn(j|s, dn(s))(rn(s, dn(s), j) + un+1(j)). (4.6)

6 return u1(s) for all s ∈ S.

Some comments about this algorithm follow:

1. In the algorithm, we use the dummy variable u to distinguish the workings of
the algorithm from the concept of the value function; this separation allows us
to formalize their connection below. Indeed, Proposition 4.1 shows that this
algorithm finds the expected total reward of policy π for the whole planning
horizon and from decision epoch n onwards (i.e., that un(s) = vπn(s) for all
n = 1, . . . , N − 1 and s ∈ S).

2. Suppose there are M states in S. Each iteration of the algorithm (step 4) requires
on the order of M operations (multiplications and additions) to compute un(s)
for a given s. Since there are M states and the algorithm lasts N − 1 iterations,
the algorithm requires O(NM2) operations. In terms of storage, each iteration

CHAPTER 4. FINITE HORIZON MODELS 82

requires the storage of M values of un(s), so storing all iterates results in total
storage of O(NM). However, if one stores only the values from the most recent
iteration, then storage requirements are O(M). While this book will not focus
much on such algorithmic details, it is important to understand that efficient
implementation can have a significant impact on computation.

3. If rn does not depend on the subsequent state, equation (4.6) simplifies to

un(s) = rn(s, dn(s)) +
∑
j∈S

pn(j|s, dn(s))un+1(j). (4.7)

Policy evaluation with Algorithm 4.1

The following example illustrates the use of Algorithm 4.1 to evaluate a specified
Markov deterministic policy in the two-state model of Example 2.1.

Example 4.1. Let N = 3 and consider the Markovian deterministic policy π =
(d1, d2) where

d1(s1) = a1,2, d1(s2) = a2,2

and
d2(s1) = a1,1, d2(s2) = a2,1.

The algorithm proceeds as follows.

1. Set n = 3. Since r3(s) = 0 for both states s, set u3(s1) = u3(s2) = 0.
2. Set n = 2 and

u2(s1) = p2(s1|s1, a1,1)(r2(s1, a1,1, s1) + u3(s1)) + p2(s2|s1, a1,1)(r2(s1, a1,1, s2) + u3(s2))

= 0.8(5 + 0) + 0.2(−5 + 0) = 3

and

u2(s2) = p2(s1|s2, a2,1)(r2(s2, a2,1, s1) + u3(s1)) + p2(s2|s2, a2,1)(r2(s2, a2,1, s2) + u3(s2))

= 0 + 1(−5 + 0) = −5.

3. Set n = 1 and

u1(s1) = p2(s1|s1, a1,2)(r2(s1, a1,2, s1) + u2(s1)) + p2(s2|s1, a1,2)(r2(s1, a1,2, s2) + u2(s2))

= 0 + 1(5 + (−5)) = 0

and

u1(s2) = p2(s1|s2, a2,2)(r2(s2, a2,2, s1) + u2(s1)) + p2(s2|s2, a2,2)(r2(s2, a2,2, s2) + u2(s2))

= 0.4(20 + 3) + 0.6(−10 + (−5)) = 0.2

CHAPTER 4. FINITE HORIZON MODELS 83

4. Since n = 1, stop.

These calculations establish that vπ1 (s1) = 0 and vπ1 (s2) = 0.2. For comparison, let’s
solve this problem using forward recursion. Following Section 2.2.4, we must determine
the distribution of states and actions under this policy. Let’s consider the first case
where the process starts in state s1. In the first epoch, d1 chooses action a1,2, which
results in a deterministic transition to state s2. In the second epoch, at state s2, d2

chooses a2,1, which results in a deterministic self-transition. Thus, the only possible
realization of the process is (s1, a1,2, s2, a2,1, s2). The total reward along this sample
path is 0, in agreement with Example 4.1.

If the process starts in s2, then several realizations are possible, as summarized in
Table 4.1 with the corresponding probabilities and total rewards.

Table 4.1: Realizations of states and actions, probabilities and total rewards under
policy π starting in state s2 in Example 4.1.

Realization Probability Total Reward
(s2, a2,2, s2, a2,1, s2) 0.6 −10− 5 = −15
(s2, a2,2, s1, a1,1, s1) 0.4× 0.8 = 0.32 20 + 5 = 25
(s2, a2,2, s1, a1,1, s2) 0.4× 0.2 = 0.08 20− 5 = 15

It follows that the expected total reward starting in s2 equals 0.6(−15)+0.32(25)+
0.08(15) = 0.2, also in agreement with Example 4.1. Notice that for large N , the set of
possible realizations could be huge, and so Algorithm 4.1, which implements backward
recursion, would be preferred to explicitly evaluating all the possible state and action
realizations required in forward recursion.

Confirming that Algorithm 4.1 computes the value of a policy*

Next, we provide a laborious step-by-step proof that Algorithm 4.1 produces the value
of a policy defined by equation (4.1). Our proof uses the following basic result, which
is sometimes referred to as the Law of Iterated Expectations.

Lemma 4.1. Let X and Y be random variables. Then

E[X] = EY [E[X|Y]]

For a concrete example of this lemma, let X and Y be random variables that denote
the lifetime earnings and years of post-secondary education, respectively, of a randomly
chosen individual in the world. Computing the average earnings of all individuals in
the world E[X], can be done by computing the average earnings conditioned on the
number of years of post-secondary education E[X|Y], and then averaging these values
based on the probability distribution of post-secondary education years P (Y). For

CHAPTER 4. FINITE HORIZON MODELS 84

example, if everybody has between 0 and 10 years of post-secondary education, then
E[X] = EY [E[X|Y]] =

∑10
y=0E[X|Y = y]P (Y = y).

Proposition 4.1. Let π = (d1, . . . , dn−1) ∈ ΠMD. Suppose un(s) is computed using
Algorithm 4.1, vπ(s) is defined as in (4.1) and vπn(s) is defined as in equation (4.2).
Then

1. un(s) = vπn(s) for n = 1, . . . , N and all s ∈ S.

2. vπ(s) = vπ1 (s) for all s ∈ S.

Proof. We prove the first part by induction. Clearly, the result holds for n = N since

uN(s) = rN(s) = Eπ[rN(Xn)|Xn = s] = vπN(s)

for all s ∈ S.
Now, assume for t = n+ 1, . . . , N and for all s ∈ S,

ut(s) = Eπ

[
N−1∑
i=t

ri(Xi, di(Xi), Xi+1) + rN(XN)

∣∣∣∣Xt = s

]
= vπt (s). (4.8)

From Algorithm 4.1 and the induction hypothesis, we have

un(s) =
∑
j∈S

pn(j|s, dn(s))[rn(s, dn(s), j) + un+1(j)]

=
∑
j∈S

pn(j|s, dn(s))[rn(s, dn(s), j) + vπn+1(j)]

= Eπ
[
rn(Xn, dn(Xn), Xn+1) + vπn+1(Xn+1)|Xn = s

]
= Eπ

[
rn(Xn, dn(Xn), Xn+1) + Eπ

[
N−1∑
i=n+1

ri(Xi, di(Xi), Xi+1) + rN(XN)

∣∣∣∣Xn+1

] ∣∣∣∣Xn = s

]

= Eπ [rn(Xn, dn(Xn), Xn+1)|Xn = s] + Eπ

[
N−1∑
i=n+1

ri(Xi, di(Xi), Xi+1) + rN(XN)

∣∣∣∣Xn = s

]

= Eπ

[
N−1∑
i=n

ri(Xi, di(Xi), Xi+1) + rN(XN)

∣∣∣∣Xn = s

]
= vπn(s),

where the fifth equality follows from Lemma 4.1 and the fact that the expectation of
a sum equals the sum of expectations.

The second result simply follows from the definition of vπ1 (s).

CHAPTER 4. FINITE HORIZON MODELS 85

4.1.4 Evaluating a History-Dependent Randomized Policy*

We don’t expect that you’ll ever want to evaluate a history-dependent randomized
policy, but in case you do, this section will show you how. Moreover the development
herein will be used in the technical appendix to establish the optimality of Markovian
deterministic policies in the class of history-dependent randomized policies. Exercise
7 asks you to use it to evaluate a history-dependent randomized policy in a simple
example.

Let π = (d1, d2, . . . , dN−1) ∈ ΠHR be a history-dependent randomized policy. This
means that at decision epoch n, dn chooses action a according to some probability
distribution given by equation (2.4). The following algorithm computes the value of
a fixed history-dependent randomized policy. Note that since the number of histo-
ries grows exponentially with n, policy evaluation quickly becomes computationally
intractable – it requires calculating vπn(hn) for each hn ∈ Hn, where Hn is the set of all
histories up to and including decision epoch n.

Algorithm 4.2: The Finite Horizon Policy Evaluation Algorithm for History-
Dependent Randomized Policies

1 Choose π = (d1, . . . , dN−1) ∈ ΠHR. Set n = N and uN(hN) = rN(sN) for all
hN = (hN−1, aN−1, sN) ∈ HN .

2 while n > 1 do
3 n← n− 1
4 for hn = (hn−1, an−1, sn) ∈ Hn do
5 Evaluate un(hn) according to

un(hn) =
∑
j∈S

∑
a∈Asn

wndn(hn, a)pn(j|sn, a)(rn(sn, a, j) + un+1(hn+1)),

(4.9)
where hn+1 = (hn, a, j).

6 return u1(h1) for all h1 ∈ H1 = S.

Some comments about Algorithm 4.2 follow:

1. We leave it as an exercise to show that un(hn) = vπn(hn) for all hn ∈ Hn and
n = 1, . . . , N .

2. In the first iteration (when n = N), the algorithm assigns the same value to all
histories

hN = (s1, a1, s2, . . . , sN−1, aN−1, sN)

that agree in state sN . That is, if the state at decision epoch N is s, then all
histories that end at s are given the same value.

3. In (4.9), recall that wndn(hn, a) represents the probability that action a is chosen
in epoch n, given the history hn and decision rule dn. Since decision rules are
history-dependent, the randomization distribution wndn(hn, a) may be different

CHAPTER 4. FINITE HORIZON MODELS 86

for different histories. However, rewards and transition probabilities depend only
on sn and not the entire history. Moreover, if action a is chosen in state hn at
decision epoch n and the next transition is to state j, the history at decision
epoch n+ 1 is (hn, a, j) (see (2.3)), which is the argument of un+1(·).

4.2 Optimal policies and their values

A decision maker’s goal is to find an optimal policy, that is, one that maximizes the
expected total reward among all possible policies. In this section, we formalize the
definition of optimal policies for finite horizon Markov decision processes and provide
a recursion to compute them.

Definition 4.1. An optimal policy π∗ ∈ ΠHR satisfies

vπ
∗
(s) ≥ vπ(s) (4.10)

for all π ∈ ΠHR and s ∈ S.

Definition 4.2. The optimal value function v∗(s) is defined by

v∗(s) := sup
π∈ΠHR

vπ(s). (4.11)

for all s ∈ S. Similarly, we define the optimal value from epoch n to the end of the
planning horizon as

v∗n(s) := sup
π∈ΠHR

vπn(s). (4.12)

As a consequence of (4.10) and (4.11), when an optimal policy π∗ exists, its value
satisfies

vπ
∗
(s) = v∗(s) (4.13)

for all s ∈ S. Exercise 4 provides a simple example (with a countable action set) in
which an optimal policy need not exist.

In cases where there is no optimal policy, focus shifts to finding a policy that is
suboptimal by an amount no greater than ε.

Definition 4.3. For any ε > 0, an ε-optimal policy πε ∈ ΠHR satisfies

vπ
ε

(s) ≥ v∗(s)− ε (4.14)

CHAPTER 4. FINITE HORIZON MODELS 87

for all s ∈ S.

Of course v∗(s) ≥ vπ
ε
(s) for all s ∈ S. Exercise 5 asks you to establish that for any

Markov decision process, there always exists an ε-optimal policy.
Finally, under mild assumptions such as having finite action sets, we can show that

Markovian deterministic policies are optimal within the more general class of history-
dependent randomized policies. This means that the search for an optimal policy can
be restricted to searching within the class of Markovian deterministic policies.

Theorem 4.1. Suppose As is finite for each s ∈ S. Then there exists π∗ ∈ ΠMD

that achieves the optimal value v∗(s) for all s ∈ S. That is,

v∗(s) = max
π∈ΠMD

vπ(s). (4.15)

Moreover, the same policy π∗ achieves the optimal value starting at any epoch
n = 1, . . . , N

v∗n(s) = max
π∈ΠMD

vπn(s) (4.16)

Notice that not only does Theorem 4.1 speak to an optimal policy and optimal
value starting from the first epoch, it establishes that the same policy is optimal from
any decision epoch n to the end of the planning horizon. Richard Bellman coined the
expression The Principle of Optimality, to describe this property of optimal policies.
He wrote:

“An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision.”

For a concrete interpretation, consider driving from location A to Z along the
shortest path, which involves visiting locations B, C, D, . . . , Y on the way. Then it
must be the case that the shortest path from B to Z visits C, D, . . . , Y as well in the
same order. The reason is that if there is a different path from B to Z that is shorter,
then we could use that when driving from A to Z, which contradicts the fact that the
initial path from A to Z was shortest.

It is critical to recognize that Theorem 4.1 allows us to focus on Markovian deter-
ministic policies in our exposition, without loss of generality. This is a fundamental
result within the theory of Markov decision processes. We will provide a constructive
proof below.

4.2.1 Computing Optimal Values and Finding Optimal Poli-
cies

In this section, we provide a recursion to compute v∗(s) and show how to use it to find
an optimal policy, π∗, assuming one exists. Given Theorem 4.1, the exposition below

CHAPTER 4. FINITE HORIZON MODELS 88

assumes policies are Markovian and deterministic.
In the spirit of the one-period model of Section 2.4, set v∗N(s) = rN(s) and define

v∗N−1(s) for all s ∈ S by

v∗N−1(s) = max
a∈As

{∑
j∈S

pN−1(j|s, a)(rN−1(s, a, j) + v∗N(j))

}
. (4.17)

The quantity v∗N−1(s) represents the maximum expected total reward achievable start-
ing in state s in a one-period model with immediate reward rN−1(s, a, ·) and terminal
reward v∗N(·) = r∗N(·).

Define A∗N−1,s to be the set of actions at decision epoch N − 1 that achieve the
maximum in equation (4.17):

A∗N−1,s = arg max
a∈As

{∑
j∈S

pN−1(j|s, a)(rN−1(s, a, j) + v∗N(j))

}
. (4.18)

Now construct a decision rule d∗N−1(s) by setting it equal to some a∗N−1 ∈ A∗N−1,s for
each s ∈ S. Although the maximum need not be unique, selecting any element of
A∗N−1,s suffices. By construction, vd

∗
N−1(s) = v∗N−1(s), so it is an optimal decision rule

at decision epoch N − 1 in a one-period problem.
Next, define v∗N−2(s) for all s ∈ S by

v∗N−2(s) = max
a∈As

{∑
j∈S

pN−2(j|s, a)(rN−2(s, a, j) + v∗N−1(j))

}
. (4.19)

By the same argument as above, v∗N−2(s) is the maximum expected total reward achiev-
able starting in state s in a one-period model with immediate reward rN−2(s, a, ·) and
terminal reward v∗N−1(·). But, considering the interpretation of v∗N−1(s), we can equiv-
alently interpret v∗N−2(s) as the maximum expected total reward in a two-period prob-
lem with immediate rewards rN−2(s, a, ·) and rN−1(s, a, ·), and terminal reward rN(·).
Repeating this argument leads to a recursive algorithm for computing v∗.

In general, define

v∗n(s) = max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + v∗n+1(j))

}
. (4.20)

Let A∗n,s be the set of optimal actions at epoch n, those that achieve the maximum in
equation (4.20):

A∗n,s = arg max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + v∗n+1(j))

}
. (4.21)

CHAPTER 4. FINITE HORIZON MODELS 89

Letting d∗n(s) = a∗n ∈ A∗n,s results in an optimal decision rule at epoch n. By choos-
ing d∗n(s) to be an element of A∗n,s for n = 1, 2, . . . , N − 1 and s ∈ S, then π∗ =
(d∗1, d

∗
2, . . . , d

∗
N−1) is an optimal policy. In other words, vπ

∗
(s) = v∗(s).

The following algorithm formalizes the computation of an optimal value function
and optimal policy.

Algorithm 4.3: The Finite Horizon Policy Optimization Algorithm

1 Set n = N and uN(s) = rN(s) for all s ∈ S.
2 while n > 1 do
3 n← n− 1
4 for s ∈ S do
5 Evaluate un(s) according to

un(s) = max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + un+1(j))

}
. (4.22)

6 Set

A∗n,s = arg max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + un+1(j))

}
. (4.23)

7 Select dn(s) ∈ A∗n,s.

8 return u1(s) for all s ∈ S and π = (d1, . . . , dN−1).

Some important comments about Algorithm 4.3 follow:

1. This algorithm is often referred to as Backwards Induction or Dynamic Program-
ming.

2. Expression (4.22) is the fundamental relationship underlying finite horizon Markov
decision processes. It is often called the Bellman Equation, after Richard Bell-
man, who is regarded as the founder of dynamic programming. Others refer to
it simply as the optimality equation.

3. Theorem 4.2 below formally states that this algorithm computes v∗n(s), the op-
timal expected total reward over decision epochs n, n + 1, . . . , N − 1 starting in
state s at decision epoch n, and v∗(s), the optimal value function, as defined by
(4.11) for all s ∈ S.

4. Any policy that chooses an action in the set A∗n,s for each s and n is optimal. If
the sets contain a single element for all s and n, there is a unique optimal policy.
Note that when there are multiple optimal policies, one might be preferred to
another because it has a more interpretable structure or the value has smaller

CHAPTER 4. FINITE HORIZON MODELS 90

variance (e.g., over many simulation replicates). Section 4.4 provides a systematic
approach to identifying structured optimal policies.

5. Note that finding the set of optimal actions A∗n,s requires no additional compu-
tation. It is obtained as a consequence of evaluating the maximum in (4.22) over
each action a and storing those actions that achieve the maximum.

6. As in the case of the Finite Horizon Policy Evaluation Algorithm, the Finite
Horizon Policy Optimization Algorithm decomposes the multi-period optimiza-
tion problem into a sequence of one-period optimization problems. This approach
avoids enumerating all Markovian deterministic policies and their corresponding
sample paths. If there are M states and K actions in each, the algorithm requires
(N − 1)KM2 multiplications. When only a single optimal policy is required, one
needs only store the policy elements obtained at each iteration and v∗n(s).

7. Theorem 4.1 is applicable for both finite and countable state space. Accordingly,
Algorithm 4.3 is applicable to both cases. However, one cannot naively calculate
un(s) for every s when S is countably infinite. Practical options are to truncate
the state space at a large state value (and modify the transition probabilities
accordingly) or to establish some structure of the value function or optimal policy
that makes it easy to identify an optimal action for all states above a certain
threshold. We use the queuing service rate control application to illustrate both
options in Sections 4.3.1 and 4.4.2. Another option is to approximate v∗n(s) by a
parametric function function of s. See Chapter 10.

The following theorem states that Algorithm 4.3 is guaranteed to find an optimal
policy that is Markovian and deterministic, along with the corresponding optimal value.
The lengthy but insightful development needed to formally prove this result appears in
Appendix 4.1. Combining Theorem 4.2 with Theorem 4.1 implies that Algorithm 4.3
finds an optimal policy within the most general class of history-dependent randomized
policies.

Theorem 4.2. Let As be finite for all s ∈ S. Suppose un(s) is computed using
Algorithm 4.3, v∗(s) is defined as in (4.15), and v∗n(s) is defined as in (4.16).

1. For n = 1, 2, . . . , N and s ∈ S, un(s) = v∗n(s). In particular, u1(s) = v∗(s).

2. Suppose for n = 1, 2, . . . , N and s ∈ S that∑
j∈S

pn(j|s, dn(s))(rn(s, dn(s), j) + un+1(j))

= max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + un+1(j))

}
. (4.24)

CHAPTER 4. FINITE HORIZON MODELS 91

Then π∗ = (d1, d2, . . . , dN−1) is an optimal policy.

Returning to the discussion surrounding the Principle of Optimality, immediately
following Theorem 4.1, it follows that Algorithm 4.3 provides a method to construct
optimal policies and determine optimal values from any decision epoch n onward.

When do optimal policies exist?

The astute reader will recognize that the reason we assume finite action sets above
is to ensure that the maximum is attained in equation (4.22). Another condition
that ensures attainment of the maximum is that As is a compact set for all s ∈ S and
rn(s, a, j) and pn(j|s, a) are continuous functions of a for all s ∈ S and j ∈ S. However,
optimal policies need not exist when As is countable or an open set.

We delve into this issue more formally by recognizing that the attainment of the
max in equation (4.22) is sufficient for the existence of an optimal policy, regardless of
whether the state space is finite, countable or continuous.

Corollary 4.1. Suppose the maximum is attained in (4.22) for n = 1, 2, . . . , N−1
and v∗N(s) = rN(s) for all s ∈ S. Then there exists an optimal policy π∗ =
(d∗1, d

∗
2, . . . , d

∗
N−1) ∈ ΠMD for any d∗n(s) ∈ A∗n,s as defined by (4.23) for n =

1, 2, . . . , N − 1.

4.2.2 A numerical example illustrating computation of an op-
timal policy

We now show how to use The Finite Horizon Policy Optimization Algorithm to find an
optimal policy and the corresponding optimal value using the two-state example from
Example 2.1.

Example 4.2. Let N = 3.
1. Set n = 3. Since r3(s) = 0 for s = s1 and s = s2, set u3(s1) = u3(s2) = 0.
2. Set n = 2 and

u2(s1) = max{0.8(5) + 0.2(−5) + 0, 5 + 0} = 5

and
u2(s2) = max{−5 + 0, 0.4(20) + 0.6(−10) + 0} = 2

Consequently A∗2,s1 = {a1,2} and A∗2,s2 = {a2,2}.
3. Set n = 1 and

u1(s1) = max{5 + 2, 0.8(5 + 5) + 0.2(−5 + 2)} = 7.4

CHAPTER 4. FINITE HORIZON MODELS 92

and

u1(s2) = max{−5 + 2, 0.4(20 + 5) + 0.6(−10 + 2)} = 5.2

Consequently A∗1,s1 = {a1,2} and A∗1,s2 = {a2,2}.
4. Since n = 1, stop.

These calculations show that v∗(s1) = 7.4 and v∗(s2) = 5.2, and the unique optimal
policy is π∗ = (d∗1, d

∗
2) where d∗1(s1) = d∗2(s1) = a1,2 and d∗1(s2) = d∗2(s2) = a2,2. This

policy is unique because the optimal action set contains a single element at each decision
epoch and state.

4.3 Applications

In this section, we apply the Finite Horizon Policy Optimization Algorithm to numer-
ically find optimal policies for several of the applications in Chapter 3.

4.3.1 Queuing service rate control

Consider a finite horizon variant of the service rate control problem described at the
end of Section 3.3.1. Let the horizon length be N = 5. We assume there are three
service probabilities a1 = 0.2, a2 = 0.4 and a3 = 0.6. Let the arrival probability be
b = 0.1. Let the delay cost be f(s) = s, the cost per period of serving at rate a to be
m(a) = 10a and the terminal reward be rN(s) = 0 for all s.

To facilitate computation, we assume the state is truncated at some large occupancy
level W at which arrivals are blocked and do not enter the system. To determine an
appropriate value for W , we can appeal to steady state results for an M/M/1 queue,
since the model is a discrete-time version of an M/M/1 queue given a fixed choice of
the service probability a. In particular, it is well-known that for service probability
a and arrival probability b (b < a) the expected queue length and variance in queue
length in an M/M/1 queue equals b/(a−b) and ba/(a−b)2, respectively. Thus, setting

W =
b

a1 − b
+ 4

√
ba1

a1 − b
, (4.25)

which is four standard deviations above the mean, ensures that W is reached with
low probability even under the lowest service probability. Using the parameter values
above and equation (4.25), we set W = 6.

As a result of truncating the state space at W , we add transition probabilities p(W−
1|W,ak) = ak and p(W |W,ak) = 1− ak for k = 1, 2, 3. The transition probabilities up
to state W−1 are the same as before (see equations (3.1) and (3.2)): For s = 1, 2, . . . , 5

CHAPTER 4. FINITE HORIZON MODELS 93

and k = 1, 2, 3,

p(j|s, ak) =


ak j = s− 1

0.1 j = s+ 1

1− ak − 0.1 j = s.

(4.26)

For s = 0 and k = 1, 2, 3,

p(j|0, ak) =

{
0.1 j = 1,

0.9 j = 0.
(4.27)

Given these parameter values, we can implement Algorithm 4.3. Since the re-
wards in this problem represent costs, we use the negative of the reward defined in
Section 3.3.1, m(a) + f(s), and replace the maximization with a minimization.

At termination, we obtain the optimal value function

v∗ = (8.5, 11.5, 15.4, 19.4, 23.4, 27.4, 30.9)

corresponding to states s = 0, . . . , 6. The optimal policy consists of decision rules
where for each state and epoch, the optimal action is a1. To understand this result,
notice that the cost of choosing a3 is 6, which is also equal to the delay cost of having
6 users in the system. Thus, it is intuitive that it is optimal to choose the least costly
action in every state and epoch.

However, we notice different behavior as we change the parameters. For example,
consider quadratic delay costs (f(s) = s2). Re-running the algorithm, we find that the
optimal decision rule at epoch 1 is d∗1 = (a1, a1, a1, a3, a3, a3, a3). That is, if the system
starts out in a state that is not too busy (s = 0, 1, 2), then it is optimal to use the lowest
service probability. But if the system is more heavily loaded (s = 3, . . . , 6), then it is
optimal to use the highest service probability. We observe similar behavior at epoch
2, where the optimal decision rule is d∗2 = (a1, a1, a1, a1, a3, a3, a3). The only difference
with epoch 1 is that in state 3, the optimal decision switches from a3 to a1. The
reasoning is that being one epoch closer to the end of the horizon, there is less likelihood
that using a lower service probability will lead to a more costly system state by the
end of the horizon. So, the reduction in cost due to using a lower service probability
was more than the expected increase in cost due to future delays. If we consider cubic
delay costs (f(s) = s3), we find that the optimal action is to use the highest service
probability for even less busy states. For example, d∗1 = d∗2 = (a1, a1, a3, a3, a3, a3, a3).
Figure 4.1 illustrates these policies.

Next, we modify the cost of serving at probability a to make it quadratic (m(a) =
10a2) or cubic (m(a) = 10a3). Assume the delay costs are quadratic (f(s) = s2).
Re-running the algorithm, we find that the optimal decision rule at epoch 1 is now
d∗1 = (a1, a1, a2, a3, a3, a3, a3). The difference from before is that at state 2, the optimal
action is now the intermediate service probability. Because the cost of an action is
now proportional to the square of its value, and because the action values are less
than 1, the relative cost of a2 = 0.4 to a1 = 0.2 has decreased. So it has become
more cost effective to use a higher service probability in state 2. At epoch 2, the

CHAPTER 4. FINITE HORIZON MODELS 94

0 1 2 3 4 5 6

State (jobs in system)

a1

a2

a3
A

ct
io

n
(s

er
vi

ce
pr

ob
ab

ili
ty

)
epoch 1

epoch 2

epoch 3

epoch 4

0 1 2 3 4 5 6

State (jobs in system)

a1

a2

a3

A
ct

io
n

(s
er

vi
ce

pr
ob

ab
ili

ty
)

epoch 1

epoch 2

epoch 3

epoch 4

Figure 4.1: Optimal policy for linear service cost m(a) = 10a and quadratic delay cost
f(s) = s2 (left) or cubic delay cost f(s) = s3 (right).

0 1 2 3 4 5 6

State (jobs in system)

a1

a2

a3

A
ct

io
n

(s
er

vi
ce

pr
ob

ab
ili

ty
)

epoch 1

epoch 2

epoch 3

epoch 4

0 1 2 3 4 5 6

State (jobs in system)

a1

a2

a3
A

ct
io

n
(s

er
vi

ce
pr

ob
ab

ili
ty

)
epoch 1

epoch 2

epoch 3

epoch 4

Figure 4.2: Optimal policy for quadratic delay cost f(s) = s2 and quadratic service
cost m(a) = 10a2 (left) or cubic service cost m(a) = 10a3 (right).

decision rule becomes d∗2 = (a1, a1, a1, a2, a3, a3, a3). Compared to d∗1, equal or lower
service probabilities are used in each state, since we are one period closer to the end
of the horizon. Finally, if we use a cubic serving cost, then it becomes more cost
effective to use higher service probabilities in less busy states. For example, in this
case d∗1 = (a1, a2, a3, a3, a3, a3, a3). Note that the decision rules presented so far are
monotonic, meaning that as the state increases the value of the completion probability
is non-decreasing. Figure 4.2 illustrates these policies.

A peculiar structure arises when the delay costs are linear (f(s) = s) and the
serving costs remain cubic (m(a) = 10a3). The optimal decision rule at epoch 1 is
d∗1 = (a1, a1, a2, a2, a2, a2, a1). This decision rule is not monotonic. We see a similar
result when the serving costs are changed to m(a) = 5a3 and an extra epoch is added,
namely that d∗1 = (a1, a2, a2, a3, a3, a3, a2). Figure 4.3 illustrates these policies. In these

CHAPTER 4. FINITE HORIZON MODELS 95

0 1 2 3 4 5 6

State (jobs in system)

a1

a2

a3
A

ct
io

n
(s

er
vi

ce
pr

ob
ab

ili
ty

)
epoch 1

epoch 2

epoch 3

epoch 4

0 1 2 3 4 5 6

State (jobs in system)

a1

a2

a3

A
ct

io
n

(s
er

vi
ce

pr
ob

ab
ili

ty
)

epoch 1

epoch 2

epoch 3

epoch 4

epoch 5

Figure 4.3: Optimal policy for linear delay cost f(s) = s and cubic service costs
m(a) = 10a3 with N = 5 (left) or cubic service costs m(a) = 5a3 with N = 6 (right).
Unlike the previous example, here the policy is non-monotone at epoch 1.

cases and others, the optimal decision at state W is a slower service rate than at state
W − 1. This result persists if we increase W . At state W , the linear delay cost is
not sufficiently high to warrant the use of the highest serving probability. Plus, since
the system is at capacity, there is no chance an arrival will come and increase the
system’s delay costs further. However, at W − 1, this is not the case, as delay costs
can still increase with another arrival. When the delay costs were quadratic or cubic,
as in previous examples, being in state W was much more undesirable, so the optimal
action was a3 in early epochs. Indeed, with serving costs m(a) = 5a3, the difference
in value between a2 and a3 is about 0.1% to 0.2% for states 2 to W . Thus, small
changes to the cost structure are likely to lead to different optimal actions. Note that
the lack of monotonicity only occurs in epoch 1 in Figure 4.3. However, depending
on the cost structure, the optimal decision rule can be non-monotonic for later epochs
(see Exercise 17).

The above example illustrates that the optimal decision rule is monotonic except at
state W . It turns out this is due to the state space truncation. If we do not truncate
the state space, we can prove that optimal decision rules, under certain conditions, are
guaranteed to be monotonic. In the case of a truncated state space, we can guarantee
monotonicity by setting the action in state W to always be the one corresponding to
the highest serving probability.

4.3.2 Revenue management

In this example, we consider the revenue management problem from Section 3.1. As-
sume the selling season is six months and the retailer has 15 units of inventory to sell.
We assume there are seven candidate prices over the course of the season, with the
lowest equaling the scrap value. The non-scrap candidate prices are $20, $23, $25, $27,

CHAPTER 4. FINITE HORIZON MODELS 96

0 2 4 6 8 10 12 14

State (inventory remaining)

20

23

25

27

30

35
A

ct
io

n
(p

ri
ce

)
epoch 1

epoch 2

epoch 3

epoch 4

epoch 5

0 2 4 6 8 10 12 14

State (inventory remaining)

20

23

25

27

30

35

A
ct

io
n

(p
ri

ce
)

epoch 1

epoch 2

epoch 3

epoch 4

epoch 5

Figure 4.4: Policy across time for zero scrap value (left) and $5 scrap value (right).

$30 and $35. We consider two possibilities for the scrap value, $0 and $5, to investigate
how the solution changes as a function of the scrap value. The holding cost per item
is $2 and is calculated based on the end of month inventory. Finally, the monthly de-
mand is Poisson distributed with rate λn,a = (1.1− 0.1n)(9− 0.25a), which is linearly
decreasing in both a and n.

Figure 4.4 depicts optimal policies for the two different scrap values. First, we
notice that the policies are monotonic, which means that as the inventory grows, the
retailer will set a lower price. For a fixed inventory level, the price also drops as we
approach the end of the horizon. However, with a higher scrap value of $5, the optimal
decision rule may be willing to set higher prices at a given epoch compared to the case
with zero scrap value. For example, compare the price at epoch 5 with three units of
inventory remaining. When the scrap value is $0, the optimal decision is to reduce the
price to the lowest value of $20. But when the scrap value is $5, the optimal decision
is to keep the price at $23.

4.4 Interpretability: Optimality of Structured Poli-

cies

Interpretability refers to the ability of a user to clearly understand why a model pre-
scribes a specific action in a specific state. This concept has become especially impor-
tant as decision problems have become increasingly complex and often result in black
box solutions that users may not be confident in implementing.

Along these lines, a significant stream of research that dates back to the origins of
operations research in the 1950s focused on interpretability by examining the structure
of optimal policies in Markov decision process applications. One of the most well-
known examples comes from inventory control. Consider an inventory model with
fixed ordering costs and linear holding and shortage costs. It was shown that there

CHAPTER 4. FINITE HORIZON MODELS 97

exists an optimal policy that takes the form of an (s, S) policy: when the inventory
level falls below s, and order is placed to raise the inventory level up to S. Such policies
are also referred to min-max policies and implemented in many commercial inventory
systems. Policies of this form are easy to understand and implement. The primary
challenge is to specify optimal values for the quantities s and S.

In addition to understanding the theoretical basis for the structure of an optimal
policy, there is also a computational advantage to identifying the structure of an optimal
policy. Knowledge that such a policy exists reduces the search for an optimal policy to
a smaller class. For example, if one can compute the cost of an (s, S) policy by other
analytical methods, then optimizing over s and S will provide an optimal policy.

Another example comes from linear programming. Assuming a linear programming
problem has an optimal solution and its feasible region contains at least one vertex, the
search for an optimal solution can be restricted to a search among the vertices. This
result is closely related to the optimality of Markovian deterministic policies among the
space of all history-dependent randomized policies. We make this connection between
solutions to linear programs and Markov decision processes explicit in Section 5.14.

Another major class of structured optimal policies are control limit policies, which
are prevalent in many applications including queuing control, maintenance, and clinical
decision making.

Definition 4.4. Assume the states s ∈ S can be ordered. A control limit policy
is a Markovian deterministic policy with decision rules dn(s), n = 1, . . . , N − 1 of
the form

dn(s) =

{
a1 s ≤ s̄n

a2 s > s̄n,

where a1 and a2 are two distinct actions and s̄n is the control limit. Note that the
control limit can vary over decision epochs.

A control limit policy partitions the state space into two parts and chooses a dif-
ferent action in each part. The partition has a particularly appealing structure in that
states less than or equal to s̄n are mapped to one action while those larger than s̄n are
mapped to another action.

We begin by providing some general advice on how to demonstrate that an optimal
policy is structured. Then, we provide two examples of a structured optimal policy
using applications from the previous chapter.

4.4.1 A General Approach

The following series of inductive steps enables one to demonstrate the optimality of a
structured policy:

1. Show that v∗N(s) has the specific form that ensures that an optimal decision rule
has the desired structure.

CHAPTER 4. FINITE HORIZON MODELS 98

2. Assume that for t = N − 1, N − 2, . . . , n+ 1, v∗t (s) has the specific form.

3. Prove that v∗n(s) has the specific form.

First, we must establish that if the optimal value function at epoch N has a specific
form such as convexity or monotonicity, then there exists an optimal decision rule that
has the desired structure. Then, the key is to show that the optimal value function
retains this form at epoch n, given that it holds at epoch n + 1, i.e., when v∗n(s) is
derived from the Bellman equation:

v∗n(s) = max
a∈As

{∑
p∈S

pn(j|s, a)(rn(s, a, j) + v∗n+1(j))

}
Mathematical induction establishes that the above procedure produces a structured

optimal policy for all n. Usually, step 3 requires considerable ingenuity, as the following
examples show.

4.4.2 Monotonicity of Optimal Service Rate Control Policies
in Queuing Systems*

In Section 4.3.1, we observed numerically that in some parameter regimes (e.g., quadratic
delay costs and linear serving costs) the optimal policy chose either the lowest service
probability a1 or highest service probability a3, depending on the state and epoch.
Furthermore, the optimal policy exhibited a “threshold” structure. That is, given
a particular epoch, there was a particular state s′ such that a1 is used in all states
0 ≤ s ≤ s′ and a3 is used in all states s′ < s ≤ W . Such a policy is an example
of a control limit policy. In other parameter regimes (e.g., quadratic delay costs and
cubic serving costs), the optimal policy included all three actions, with larger values
of the action being optimal in larger state values. We also noted that in some cases
(e.g., linear delay costs and cubic serving costs), this monotonicity did not hold at the
largest state W .

In this section, we formalize these numerical observations theoretically. We show
that under certain reasonable conditions, an optimal policy for the service rate control
problem is a monotone policy. That is, assuming ordered states and actions, we show
that the optimal action a∗s is non-decreasing in s. To avoid the non-monotonicity due
to state space truncation, we focus on the situation where the state space is countably
infinite.

Definition 4.5. A decision rule d is monotone if d(s) is non-decreasing or non-
increasing in s. A policy π = (d1, d2, . . . , dN) is monotone if it consists of monotone
decision rules d1, d2, . . . , dN .

CHAPTER 4. FINITE HORIZON MODELS 99

First, we write the Bellman equation (4.22) for this model. Like in the previous
subsection, we transform the problem from reward maximization to cost minimization.
So, for n = 1, . . . , N − 1 and s = 1, 2, . . . we have

vn(s) = min
a∈As
{f(s) +m(a) + avn+1(s− 1) + (1− a− b)vn+1(s) + bvn+1(s+ 1)}. (4.28)

Let A∗n,s define the set of minimizers of (4.28):

A∗n,s = arg min
a∈A

{f(s) +m(a) +avn+1(s−1) + (1−a− b)vn+1(s) + bvn+1(s+ 1)}. (4.29)

Since this set may have multiple elements, we define a∗n,s = min{a | a ∈ A∗n,s} as the
smallest element in the set.

Due to the slight differences in transition probabilities at the boundary state s = 0,
the Bellman equation becomes

vn(0) = min
a∈A0

{f(0) +m(a) + bvn+1(1) + (1− b)vn+1(0)} (4.30)

= min
a∈A0

{m(a)}+ f(0) + bvn+1(1) + (1− b)vn+1(0) (4.31)

However, recall that since m(a) is non-decreasing, a1 will always be optimal at state s =
0. This is important since it allows our subsequent development to focus on the value
function structure and optimal policy for states 1 and higher, avoiding inconvenient
boundary conditions.

Next, we define convexity for functions on discrete sets, which is needed to prove
optimality of a monotone policy. This definition is the discrete analogue of the condition
that a differentiable function is convex if its first derivative is non-decreasing.

Definition 4.6. A function g(x) defined on Z+ = {0, 1, . . .} is convex if for all
x = 1, 2, . . .

g(x+ 1)− g(x) ≥ g(x)− g(x− 1). (4.32)

Alternatively, define ∆g(x) := g(x)− g(x− 1). Then g(x) is convex if

∆g(x+ 1) ≥ ∆g(x) (4.33)

for all x = 1, 2,

Now, we proceed to showing optimality of a monotone policy. We do so under the
assumption that the delay cost f(s) and terminal reward rN(s) are convex functions
of s. First, we show that under these assumptions, the value function vn(s) is convex
in s for all n = 1, . . . , N − 1 and s = 1, 2,

CHAPTER 4. FINITE HORIZON MODELS 100

Lemma 4.2. Suppose f(s) and rN(s) are convex functions of s. Then vn(s) is
convex in s for n = 1, . . . , N .

Proof. Let s ∈ {1, 2, . . .}. We prove the result by induction on n. Clearly, the result is
true at N since vN(s) = rN(s) by definition. We will show that ∆vn(s + 1) ≥ ∆vn(s)
for all n = 1, . . . , N − 1. It suffices to show that vn(s) is convex assuming vn+1(s) is
convex, due to induction and the assumption that vN(s) is convex.

Since a∗n,s+1 need not attain the minimum at s

vn(s) ≤ f(s)+m(a∗n,s+1)+a∗n,s+1vn+1(s−1)+(1−a∗n,s+1−b)vn+1(s)+bvn+1(s+1). (4.34)

By definition of a∗n,s+1, we have

vn(s+1) = f(s+1)+m(a∗n,s+1)+a∗n,s+1vn+1(s)+(1−a∗n,s+1−b)vn+1(s+1)+bvn+1(s+2)}.
(4.35)

Subtracting (4.34) from (4.35) yields

∆vn(s+ 1) ≥ ∆f(s+ 1) + a∗n,s+1∆vn+1(s) + (1− a∗n,s+1 − b)∆vn+1(s+ 1) + b∆vn+1(s+ 2)

≥ ∆f(s+ 1) + a∗n,s+1∆vn+1(s) + (1− a∗n,s+1 − b)∆vn+1(s) + b∆vn+1(s+ 2)

= ∆f(s+ 1) + (1− b)∆vn+1(s) + b∆vn+1(s+ 2),

where the second inequality follows from convexity of vn+1(s).
By a similar argument applied to states s and s− 1,

∆vn(s) ≤ ∆f(s) + a∗n,s−1∆vn+1(s− 1) + (1− a∗n,s−1 − b)∆vn+1(s) + b∆vn+1(s+ 1)

≤ ∆f(s) + (1− b)∆vn+1(s) + b∆vn+1(s+ 1).

Combining the above inequalities, we have

∆vn(s+ 1)−∆vn(s) ≥ ∆f(s+ 1)−∆f(s) + b(∆vn+1(s+ 2)−∆vn+1(s+ 1)),

which is non-negative, due to convexity of f(s) and vn+1(s).

Note that for a fixed action a, the value function is

vn(s) = f(s) +m(a) + avn+1(s− 1) + (1− a− b)vn+1(s) + bvn+1(s+ 1).

Since the sum of convex functions is convex, it may be tempting to conclude that vn(s)
is convex since the above equation holds for each a ∈ A, and so it must hold for an
optimal a as well. However, the subtlety is that an optimal a depends on the state s,
which is why our notation is of the form an,s. Thus, to follow this approach to prove
convexity of vn(s) would require understanding how all the terms that involve an,s vary
as a function of s.

CHAPTER 4. FINITE HORIZON MODELS 101

Theorem 4.3. Suppose vn(s) is a convex function of s for n = 1, . . . , N −1. Then
a∗n,s is non-decreasing in s for n = 1, . . . , N − 1.

Proof. Rewrite (4.28) as

vn(s) = f(s) + b∆vn+1(s+ 1) + vn+1(s) + min
a∈A
{m(a)− a∆vn+1(s)}. (4.36)

Thus, it suffices to show that the smallest minimizer of m(a) − a∆vn+1(s) is non-
decreasing in s.

Fix s ∈ {1, 2, . . .}. Let an,s be the smallest minimizer of m(a)−a∆vn+1(s). Consider
s′ > s. We wish to show that an,s′ ≥ an,s. Assume to the contrary that an,s′ < an,s.
Then

m(an,s′)− an,s′∆vn+1(s) = m(an,s′)− an,s′∆vn+1(s′) + an,s′(∆vn+1(s′)−∆vn+1(s))

≤ m(an,s)− an,s∆vn+1(s′) + an,s′(∆vn+1(s′)−∆vn+1(s))

< m(an,s)− an,s∆vn+1(s′) + an,s(∆vn+1(s′)−∆vn+1(s))

= m(an,s)− an,s∆vn+1(s),

where the first inequality is due to optimality of an,s′ and the second inequality is due
to our assumption that a′n,s < an,s and convexity of vn+1(s). However, this contradicts
the assumption that an,s is the smallest minimizer of m(a) − a∆vn+1(s) so the result
follows.

Submodularity and Monotonicity

Note that we can arrive at this result a different way, using the concept of submodu-
larity. We present this alternative approach as it is instructive and provides the reader
with tools that can be used in other applications.

Definition 4.7. Let h(x, y) be a real-valued function on Z2
+. Then h(x, y) is

submodular if
h(x+, y+) + h(x, y) ≤ h(x+, y) + h(x, y+) (4.37)

for x, x+, y, y+ ∈ Z+, x
+ ≥ x and y+ ≥ y.

Submodularity is useful in this case because of the following widely-used mono-
tonicity result.

Proposition 4.2. Suppose h(x, y) is submodular on Z2
+ and let

d(x) = min{y′ | y′ ∈ arg min
y∈Z+

h(x, y)}. (4.38)

CHAPTER 4. FINITE HORIZON MODELS 102

Then d(x) is monotone non-decreasing on Z+.

Proof. Choose x ∈ Z+ and x+ ∈ Z+ such that x+ ≥ x. We wish to show that
d(x+) ≥ d(x). For any y ∈ Z+ such that y < d(x), the definition of d(x) implies that

h(x, d(x))− h(x, y) ≤ 0. (4.39)

Combining this inequality with (4.37), where we replace y+ with d(x), we have

h(x+, d(x)) ≤ h(x+, y) + h(x, d(x))− h(x, y)

≤ h(x+, y).

Since this inequality is true for all y < d(x), any minimizer of h(x+, y) must be at least
d(x). So d(x+) ≥ d(x).

Two comments regarding this result follow:

1. To apply this result in a Markov decision process setting, x corresponds to a
state and y corresponds to an action. Note that we have a finite action set, but
the definition of submodularity above requires an infinite action set. To address
this issue, we can simply define submodularity on a finite set, excluding the right
boundary point.

2. Equation (4.38) accounts for multiple possible minimizers. If there is a unique
minimizer, the expression simplifies to

d(x) = arg min
y∈I2

h(x, y).

The next result establishes submodularity of m(a) + a∆vn+1(s).

Lemma 4.3. Let h(x, y) = m(y)− yg(x) where m(y) is an arbitrary function of y
and g(x) is a non-decreasing in x. Then h(x, y) is submodular.

Proof. Let y+ ≥ y. Since g(x) is non-decreasing,

y(g(x+)− g(x)) ≤ y+(g(x+)− g(x)).

A little algebra shows that this inequality is equivalent to

m(y+)− y+g(x+) +m(y)− yg(x) ≤ m(y)− yg(x+) +m(y+)− y+g(x),

which shows that h(x, y) is submodular.

With this additional machinery, we obtain the following concise proof of Theorem
4.3.

CHAPTER 4. FINITE HORIZON MODELS 103

Alternative Proof of Theorem 4.3. By Lemma 4.3, h(s, a) := m(a) +a∆vn+1(s) is sub-
modular. By Proposition 4.2, with I1 = S and I2 = A, a∗n,s is non-decreasing in
s.

We conclude this section with an example that illustrates the result. Suppose
A = {a0, a1}, where a0 < a1. Then from the proof of Theorem 4.3, an optimal action
at decision epoch n has the following simple form

a∗s =

{
a0 if ∆vn+1(s) ≤ x̄

a1 if ∆vn+1(s) > x̄,

where x̄ = (m(a1)−m(a0))/(a1 − a0).

4.4.3 An Optimal Policy for the Online Dating Problem

To investigate the structure of an optimal policy for the online dating problem from
Section 3.8.2, we first write down the optimality equations and then solve a numerical
example to obtain some insight.

Recall that the state space is S = {0, 1,∆}, where 1 indicates the current profile
is the best encountered so far, 0 indicates that it is not, and ∆ denotes the stopped
state. Then vN(1) = 1 and vN(0) = vN(∆) = 0.

For n < N ,

v∗n(0) = max

{
v∗n+1(∆),

1

n+ 1
v∗n+1(1) +

n

n+ 1
v∗n+1(0)

}
, (4.40)

v∗n(1) = max

{
n

N
+ v∗n+1(∆),

1

n+ 1
v∗n+1(1) +

n

n+ 1
v∗n+1(0)

}
(4.41)

and v∗n(∆) = v∗n+1(∆).
Since v∗N(∆) = 0, v∗n(∆) = 0 for all n < N . Noting that v∗n(s) ≥ 0 for s = 0 and 1,

(4.40) and (4.41) reduce to

v∗n(0) =
1

n+ 1
v∗n+1(1) +

n

n+ 1
v∗n+1(0) (4.42)

and
v∗n(1) = max

{ n
N
, v∗n(0)

}
(4.43)

In state 0, continuing is at least as good as stopping, so the optimal action is to
continue. In state 1, an optimal action a∗n is given by

a∗n =

{
stop if v∗n(0) ≤ n

N

continue if v∗n(0) > n
N
.

(4.44)

CHAPTER 4. FINITE HORIZON MODELS 104

Note we adopt the convention that we stop when there is tie on the right hand side
of (4.43). Equation (4.44) provides a specific structure for an optimal action as a
function of the optimal value and the epoch. In the following example with four
potential matches (N = 4), we examine how this structure translates into an optimal
policy using equations (4.42) and (4.43).

Example 4.3. 1. Initialize calculations by setting n = 4 and v∗4(0) = 0 and
v∗4(1) = 1.

2. Set n = 3 and

v∗3(0) =
1

4
v∗4(1) +

3

4
v∗4(0) =

1

4
(4.45)

and

v∗3(1) = max

{
3

4
, v∗3(0)

}
=

3

4
. (4.46)

Hence A∗3,1 = Q and it is optimal to stop at decision epoch 3 if the profile is
the best so far.

3. Set n = 2 and

v∗2(0) =
1

3
v∗3(1) +

2

3
v∗3(0) =

1

3
· 3

4
+

2

3
· 1

4
=

5

12
(4.47)

and

v∗2(1) = max

{
2

4
, v∗2(0)

}
=

2

4
(4.48)

Hence A∗2,1 = Q and it is again optimal to stop at decision epoch 2 if the
profile is the best so far.

4. Set n = 1 and

v∗1(0) =
1

2
v∗2(1) +

1

2
v∗2(0) =

1

2
· 2

4
+

1

2
· 5

12
=

11

24
(4.49)

and

v∗2(1) = max

{
1

4
, v∗2(0)

}
=

11

24
(4.50)

Hence A∗1,1 = C and it is optimal to continue at decision epoch 1.

This example shows that it is optimal to continue at the first decision epoch and
then stop whenever a subsequent match is the best so far. The probability this strategy
finds the best candidate is 11

24
= 0.458. If one repeats these calculations for larger values

of N , similar optimal policies are observed where some number of initial matches are

CHAPTER 4. FINITE HORIZON MODELS 105

ignored and then the first profile that is the best observed so far is selected. Based
on these observations, it is natural to hypothesize that the following policy is optimal
for this problem: “Observe M profiles and then stop at the first subsequent profile is
better than all that were previously viewed”.

Theorem 4.4. Suppose N > 2. There exists a decision epoch M ∈ {1, . . . N − 1}
for which an optimal policy is to choose action C (continue) for n ≤ M and then
choose action Q (stop) at the first epoch n > M for which s = 1. If N > 2,
1 ≤M < N .

Proof. First, we show that if it is optimal to continue when s = 1 at decision epoch n′

it is optimal to continue when s = 1 at decision epoch n < n′.
Since by hypothesis v∗n′(1) = v∗n′(0),

v∗n′−1(0) =
1

n′
v∗n′(1) +

n− 1

n′
v∗n′(0) = v∗n′(0) >

n′

N
>
n′ − 1

N
. (4.51)

So by (4.44), it is optimal to continue when s = 1 at decision epoch n′ − 1 and
v∗n′−1(1) = v∗n′−1(0). Repeating this argument shows that the result holds for all n < n′

and
v∗1(1) = v∗1(0) = v∗2(1) = v∗2(0) = . . . = v∗n′(1) = v∗n′(0). (4.52)

This establishes that the optimal policy cannot switch from continue to stop and then
back to continue as a function of the epoch number.

To complete the proof, we must show that it is not optimal to always stop. Suppose
N > 2. It follows easily from (4.41) that M < N . Now assume to the contrary that it
is always optimal to stop. Then for all n, v∗n(1) = n/N and

v∗n(0) =
1

n+ 1

n+ 1

N
+

n

n+ 1
v∗n+1(0) =

1

N
+

n

n+ 1
v∗n+1(0). (4.53)

Noting vN(0) = 0 and applying (4.53) recursively we find that v∗N−1(0) = 1
N

,

v∗N−2(0) =
N − 2

N

(
1

N − 2
+

1

N − 1

)
(4.54)

and in general

v∗n(0) =
n

N

(
1

n
+

1

n+ 1
+ . . .+

1

N − 1

)
. (4.55)

Hence v∗1(0) > 1
N

, which from (4.44) implies the optimal action at decision epoch 1
is to continue contradicting our assumption that it is always optimal to stop. Thus
M ≥ 1.

CHAPTER 4. FINITE HORIZON MODELS 106

The second part of the above proof suggests a convenient way to find an optimal
policy. It is optimal to stop at epoch n if v∗n(0) ≥ v∗n(1), or equivalently if

1

n
+

1

n+ 1
+ · · ·+ 1

N − 1
≤ 1.

This yields the following important characterization of M :

M = max

{
n ≥ 1

∣∣∣∣∣ 1

n
+

1

n+ 1
+ . . .+

1

N − 1
> 1

}
. (4.56)

Consistent with the numerical results in Example 4.3, equation (4.56) returns M = 2
when N = 4. If N = 5, then M = 3.

Equation (4.56) also leads to an elegant rule of thumb approximating an optimal
policy, especially when N is large. Letting N become large and approximating the
summation in (4.56) by an integral, we see that

1

M
+

1

M + 1
+ . . .+

1

N − 1
≈
∫ N

M

1

x
dx = ln

N

M
. (4.57)

Thus, it is optimal to stop if

ln
N

M
≈ 1 or M ≈ Ne−1 = 0.368N. (4.58)

This result can be summarized succinctly as follows.

Observe 36.8% of the potential profiles and then choose the next one that is the
best observed so far.

Combining (4.55) with (4.52) and (4.57) shows that

v∗1(0) = v∗1(1) = v∗M(0) =
Ne−1

N
= e−1 = 0.368.

This means that in the limit of large N , the probability the above policy finds the best
match is 0.368.

Figure 4.5 plots M versus N . Notice that the relationship closely tracks the line
M = Ne−1, as suggested by the theory.

4.5 State-action value functions (q-functions)

The fundamental dynamic programming recursion

v∗n(s) = max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + v∗n+1(j))

}
(4.59)

CHAPTER 4. FINITE HORIZON MODELS 107

10 20 30 40 50

N

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M

M

N ∗ e−1

Figure 4.5: Graphical representation of the solution to the online dating problem.

may not be that useful when S is prohibitively large, because computing expectations
for each action inside the maximum is time consuming. In addition, the transition
probabilities and reward functions may not be known explicitly and may need to be
determined by simulation or estimation from data. To address these challenges, we
consider a slight modification of the decision-making perspective of our problem. Con-
sider a period as running from immediately after selecting an action at one decision
epoch until immediately after selecting an action at the next decision epoch. This is
in contrast to the traditional viewpoint where the action is chosen at the start of a
period, immediately after observing the state. See Figure 2.2 for a comparison of these
two perspectives.

4.5.1 Recursions for q-functions

Define qπn(s, a) to be the expected total reward from decision epoch n to the end of the
planning horizon when action a is chosen in state s at decision epoch n, and the policy
π = (dn+1, dn+2, . . . , dN−1) is used subsequently. Then

qπN−1(s, a) =
∑
j∈S

pN−1(j|s, a)(rN−1(s, a, j) + rN(j)). (4.60)

and for n = 1, . . . , N − 2

qπn(s, a) =
∑
j∈S

pn(j|s, a)(rn(s, a, j) + qπn+1(j, dn+1(j))). (4.61)

The advantage of representation (4.61) will become apparent when we optimize. The
impact of the policy enters into (4.61) only through the appearance of dn+1 in the

CHAPTER 4. FINITE HORIZON MODELS 108

Figure 4.6: Timeline showing that vn(sn) is computed after observing state sn but
before choosing action an, whereas qn(sn, an) is computed after observing both sn and
an.

expression qπn+1(j, dn+1(j)). Notice that (4.61) is similar to the expression for computing
the value of a given policy π = (d1, d2, . . . , dN−1) from equation (4.6):

vπn(s) =
∑
j∈S

pn(j|s, dn(s))(rn(s, dn(s), j) + vπn+1(j)) (4.62)

The main difference is that there is only one action in (4.62), which is dn(s), whereas
there are two actions present in (4.61), dn(s) = a and dn+1(j) where j is the next state
after s. In other words computing the value function v requires two states and one
action (state and action at epoch n and state at epoch n + 1), while q requires two
states and two actions (states and actions at both epochs n and n+ 1).

4.5.2 Revisiting Example 4.1 from the q-function perspective

Example 4.4. As in Example 4.1, let N = 3 and we evaluate the Markovian
deterministic policy π = (d1, d2), where

d1(s1) = a1,2, d1(s2) = a2,2

CHAPTER 4. FINITE HORIZON MODELS 109

and
d2(s1) = a1,1, d2(s2) = a2,1.

When n = 2, we obtain:

qπ2 (s1, a1,1) = p2(s1|s1, a1,1)(r2(s1, a1,1, s1) + r3(s1)) + p2(s2|s1, a1,1)(r2(s1, a1,1, s2) + r3(s2))

= 0.8(5 + 0) + 0.2(−5 + 0)

= 3

and

qπ2 (s2, a2,1) = p2(s1|s2, a2,1)(r2(s2, a2,1, s1) + r3(s1)) + p2(s2|s2, a2,1)(r2(s2, a2,1, s2) + r3(s2))

= 1(−5 + 0)

= −5

When n = 1, we obtain:

qπ1 (s1, a1,2) = p1(s1|s1, a1,2)(r1(s1, a1,2, s1) + qπ2 (s1, d2(s1)))+

p1(s2|s1, a1,2)(r1(s1, a1,2, s2) + qπ2 (s2, d2(s2))) (4.63)

and

qπ1 (s2, a2,2) = p1(s1|s2, a2,2)(r1(s2, a2,2, s1) + qπ2 (s1, d2(s1)))+

p1(s2|s2, a2,2)(r1(s2, a2,2, s2) + qπ2 (s2, d2(s2))). (4.64)

Substituting values in (4.63) and (4.64) and noting that d2(s1) = a1,1 and d2(s2) =
a2,1 yields

qπ1 (s1, a1,2) = 0(0 + 3) + 1(5 + (−5)) = 0

qπ1 (s2, a2,2) = 0.4(20 + 3) + 0.6(−10 + (−5)) = 0.2

Since d1(s1) = a1,2 and d1(s2) = a2,2 it follows that that qπ1 (s1, d1(s1)) = 0 and
qπ1 (s2, d1(s2)) = 0.2.

Observe that:

1. These values agree with those in Section 4.1 and require the same computational
effort. That is, qπ1 (s1, d1(s1)) = vπ1 (s1) = 0 and qπ1 (s2, d1(s2)) = vπ1 (s2) = 0.2.

2. There is no need to calculate q-values for actions that π does not use at decision
epochs 1 and 2 because they do not enter into subsequent evaluations and are
not required to determine vπ1 (·).

CHAPTER 4. FINITE HORIZON MODELS 110

4.5.3 Computing optimal q-function Values

Simulation based methods in Chapters 11 and 12 focus on estimating ”optimal” q-
functions. Let

q∗n(s, a) := sup
π∈ΠHR

qπn(s, a) = max
π∈ΠMD

qπn(s, a)

for s ∈ S and a ∈ As, where the last equality can be proved following an analogous
approach as the proof for Theorem 4.1.

Since there is no action to be taken at epoch N ,

q∗N(s, a) = rN(s) (4.65)

for all s ∈ S and a ∈ As. In epoch N − 1, we have

q∗N−1(s, a) =
∑
j∈S

pN−1(j|s, a)(rN−1(s, a, j) + rN(j)). (4.66)

In epoch N − 2, the recursion needs to consider the decision to be made at the next
epoch, N − 1, which has to be made optimally

q∗N−2(s, a) = max
a′∈As

{∑
j∈S

pN−1(j|s, a)(rN−1(s, a, j) + q∗N−1(j, a′))

}
(4.67)

=
∑
j∈S

pN−1(j|s, a)(rN−1(s, a, j) + max
a′∈As
{q∗N−1(j, a′)}). (4.68)

The second equality is due to the fact that a′ only shows up in the q∗N−1 term. Con-
tinuing this development, and noting that maxa∈As q

∗
N(s, a) = rN(s), we can write the

general recursion for n = 1, . . . , N − 1 as

q∗n(s, a) =
∑
j∈S

pn(j|s, a)(rn(s, a, j) + max
a′∈Aj
{q∗n+1(j, a′)}). (4.69)

A few key observations about this development follow.

1. The recursion for q∗n(·) differs from the recursion for v∗n(·) in (4.22) in that the
maximization is now inside the expectation. This change may not seem signif-
icant but it substantially reduces computation when v∗n(·) is evaluated through
simulation.

2. The expressions for qπN−1 in (4.60) and q∗N−1 in (4.66) are identical because no
decisions are made after action a is selected at decision epoch N − 1.

3. There is a very close connection between v∗n and q∗n. In particular, for n =
1, 2, ..., N

v∗n(s) = max
a∈As

q∗n(s, a). (4.70)

CHAPTER 4. FINITE HORIZON MODELS 111

It then follows that

q∗n(s, a) =
∑
j∈S

pn(j|s, a)(rn(s, a, j) + v∗n+1(j)). (4.71)

Therefore q∗n(s, a) may be interpreted as the expected total reward from decision
epoch n onward when action a is chosen in state s and then the system evolves
optimally.

4. For n = 1, 2, . . . , N − 1 and s ∈ S, let A∗n,s denote the optimal actions in state s
at decision epoch n. Previously, A∗n,s was defined in equation (4.21) using v∗n+1:

A∗n,s = arg max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + v∗n+1(j))

}
.

Using q-functions, and noting equation (4.71), A∗n,s can be written much more
succinctly as

A∗n,s = arg max
a∈As

q∗n(s, a). (4.72)

We found that when coding algorithms, q-functions provided a convenient inter-
mediate step when evaluating determining optimal values and policies as shown
in the following algorithm.

Algorithm 4.4: The Finite Horizon Policy Optimization Algorithm using
q-functions

1 Set n = N , qN(s, a) = rN(s) for all s ∈ S and a ∈ As, and dN(s) to be an
arbitrary action in As.

2 while n > 1 do
3 n← n− 1
4 for s ∈ S do
5 for a ∈ As do
6 Evaluate qn(s, a) according to

qn(s, a) =
∑
j∈S

pn(j|s, a)(rn(s, a, j) + qn+1(j, dn+1(j))). (4.73)

7 Set
A∗n,s = arg max

a∈As
qn(s, a). (4.74)

8 Select dn(s) ∈ A∗n,s.

9 return q1(s, d1(s)) for all s ∈ S and π = (d1, . . . , dN−1).

We leave it to the reader to establish that the computed q from Algorithm 4.4 is
equal to q∗, in a similar way as that used to show that u from Algorithm 4.3 is equal
to v∗,(Theorem 4.2).

CHAPTER 4. FINITE HORIZON MODELS 112

4.5.4 Evaluating optimal q-functions and finding optimal poli-
cies

We now revisit Example 4.2 from the q-function perspective. To find q∗1 and q∗2, we
need to expand the previous calculations to account for all possible actions in each
state at each decision epoch. We illustrate this calculation for q∗1(s1, a1,1) and leave the
remainder as an exercise.

q∗1(s1, a1,1) = p1(s1|s1, a1,1)(r1(s1, a1,1, s1) + max{q∗2(s1, a1,1), q∗2(s1, a1,2)})+
p1(s2|s1, a1,1)(r1(s1, a1,1, s2) + max{q∗2(s2, a2,1), q∗2(s2, a2,2)})

= 0.8(5 + 5) + 0.2(−5 + 2) = 7.4

Table 4.2 gives all the possible values for q∗n(s, a).

State Action q∗2(s, a) q∗1(s, a)
s1 a1,1 3 7.4
s1 a1,2 5 7
s2 a2,1 -5 -3
s2 a2,2 2 5.2

Table 4.2: Values of q∗n(s, a) for two-state model in Section 2.5. The maximum value
in each state at each decision epoch is in bold.

It is easy to identify optimal policies and values from Table 4.2 by noting which
actions attain the maximum at each decision epoch. These appear in Table 4.3.

Decision Epoch State Optimal Action v∗n(s)
1 s1 a1,1 7.4
1 s2 a2,2 5.2
2 s1 a2,2 5
2 s2 a2,2 2

Table 4.3: Optimal policies and values for two-state model in Section 2.5.

Inspecting Table 4.3 shows, for example, that

v∗1(s1) = max{q∗1(s1, a1,1), q∗1(s1, a1,2)} = 7.4.

and from (4.72) the optimal action in state s1 at decision epoch 1 is given by

A∗1,s1 = arg max{q∗1(s1, a1,1), q∗1(s1, a1,2)} = a1,1.

Observe that the optimal policies and values agree with those computed in Section
4.2.2 using corresponding algorithm for v∗.

CHAPTER 4. FINITE HORIZON MODELS 113

4.5.5 Comparison of using q-functions and v-functions in the
queuing admission control model

We consider a finite horizon version of the queuing admission control model of Sec-
tion 3.3.2 and compare optimality equations expressed in terms of value functions v(s)
and state-action value functions q(s, a). Recall that the state is represented by a vec-
tor (j, k) where the first component j denotes the number of jobs in the system and
the second component k denotes whether there is a job waiting to be either admitted
(k = 1) or not (k = 0).

For j > 0, the optimality equations expressed in terms of value functions, v(s), are

vn((j, 1))

= max{R− h(j + 1) + bvn+1((j + 1, 1)) + (1− b− w)vn+1((j + 1, 0)) + wvn+1((j, 0)),

− h(j) + bvn+1((j, 1)) + (1− b− w)vn+1((j, 0)) + wvn+1((j − 1, 0))} (4.75)

and

vn((j, 0)) = −h(j) + bvn+1((j, 1)) + (1− b−w)vn+1((j, 0)) +wvn+1((j − 1, 0)). (4.76)

We leave it as an exercise to modify these equations for j = 0. Observe that (4.76)
does not contain a “max” since there is no decision when there is no one to admit.

We now consider the optimality equations based on the state-action value function,
q(s, a). Since we are basing the recursion on the post-decision state we do not need
the second component of the state vector above. Recall that a0 corresponds to “do
not admit” and a1 to “admit”. Moreover the “do not admit” action encompasses two
situations, when there is no arrival to admit and when there is an arrival to admit and
the decision maker decides not to admit it. For j > 0,

qn(j, a0) = −h(j) + (1− b− w)qn+1(j, a0) + wqn+1(j − 1, a0)

+ bmax{qn+1(j, a0)), qn+1(j, a1)} (4.77)

and

qn(j, a1) = R− h(j + 1) + (1− b− w)qn+1(j + 1, a0) + wqn+1(j, a0)

+ bmax{qn+1(j + 1, a0)), qn+1(j + 1, a1)}. (4.78)

Again, we leave it as an exercise to modify equations (4.77) and (4.78) for j = 0.
To understand the optimality equations for the state-action value function, notice

that the terms inside the maximization have been considerably simplified. Since the
state-action value function is based on the post-decision state, if there is no new arrival
(the terms multiplied by 1− b− w and w), then there is no decision to be made (the
action is a0). Accordingly, the terms in the expected value calculation that involve
transitions to a state where there is a single possible decision can be pulled outside

CHAPTER 4. FINITE HORIZON MODELS 114

of the max. Only if there is an arrival, which occurs with probability b, does the
decision maker need to choose between a0 and a1 in the next epoch. The two terms
inside the max reflect these two actions, whose values are entirely summarized by
qn+1(s, a). Although this difference between q and v may seem minor, it has the effect
of significantly simplifying computation in certain applications. See Exercise 22 at the
end of this chapter.

Although q-functions simplify induction recursions here, the main advantage comes
when analyzing the model with simulation. In that case (see Chapter 11) the simulated
data would correspond to whether or not there was an arrival or service completion
before the next decision epoch.

4.6 Technical Appendix

In this section, we show that the Finite Horizon Policy Optimization Algorithm finds
optimal values and optimal policies within the class of Markovian deterministic policies.
We then extend this result to show that these policies are optimal in the class of history-
dependent policies.

Finding optimal policies in ΠMD

Proposition 4.3. Suppose that the maximum is attained in (4.22) for all s ∈ S,
that un(s) and A∗n,s for n = 1, 2, . . . , N − 1, s ∈ S are computed by Algorithm 4.3
and vπn(s) is as defined in equation (4.2). Then

1. For any π ∈ ΠMD, un(s) ≥ vπn(s) for n = 1, 2, . . . , N and s ∈ S.

2. Suppose π∗ = (d∗1, d
∗
2, . . . , d

∗
N−1) where d∗n(s) ∈ A∗n,s for n = 1, 2, . . . , N − 1

and s ∈ S. Then vπ
∗

n (s) = un(s) for all s ∈ S and n = 1, 2, . . . , N .

Proof. We prove the first result by induction. Let π = (d1, d2, . . . , dN−1) ∈ ΠMD. The
result holds trivially for n = N since uN(s) = rN(s) = vπN(s) for all s ∈ S.

Assume now that ut(s) ≥ vπt (s) for t = n+ 1, . . . , N and s ∈ S. From (4.22)

un(s) = max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + un+1(j))

}
≥
∑
j∈S

pn(j|s, dn(s))(rn(s, dn(s), j) + vπn+1(j))

= vπn(s),

where the last equality holds from Proposition 4.1. Hence the result holds for n =
1, . . . , N .

CHAPTER 4. FINITE HORIZON MODELS 115

We prove the second result by induction as well. By the same argument as above,
uN(s) = rN(s) = vπ

∗
(s) for all s ∈ S. Now assume vπ

∗
t (s) = ut(s) for all s ∈ S and

t = n+ 1, . . . , N . By the definition of d∗n together with (4.22) and (4.23) it follows for
all s ∈ S that

un(s) = max
a∈As

{∑
j∈S

pn(j|s, a)(rn(s, a, j) + un+1(j))

}
(4.79)

=
∑
j∈S

pn(j|s, d∗n(s))(rn(s, a, d∗n(s)) + un+1(j)) (4.80)

=
∑
j∈S

pn(j|s, d∗n(s))(rn(s, a, d∗n(s)) + vπ
∗

n+1(j)) (4.81)

= vπ
∗

n (s), (4.82)

where the third equality follows from the induction hypothesis and the last equality
follows from Proposition 4.1. So the result follows.

Corollary 4.2. Let π∗ be as defined in Proposition 4.3. Then π∗ is optimal in the
class of Markov deterministic policies.

Finding optimal values in ΠHR

Before proving that that there exist Markovian deterministic policies that are optimal
in the class of all history-dependent randomized policies, we provide a conceptual
algorithm for finding optimal values only.

Algorithm 4.5: The Finite Horizon Policy Optimization Algorithm in ΠHR

1 Set n = N and u′N(hN) = rN(sN) for all hN = (hN−1, aN−1, sN) ∈ HN .
2 while n > 1 do
3 n← n− 1
4 for hn = (hn−1, an−1, sn) ∈ Hn do
5 Evaluate u′n(hn) according to

u′n(hn) = sup
w∈P(Asn)

{ ∑
a∈Asn

w(a)
∑
j∈S

pn(j|sn, a)(rn(sn, a, j) + u′n+1((hn, a, j))

}
(4.83)

6 return u′1(s) for all s ∈ S and π = (d1, . . . , dN−1).

Note that (4.83) provides the most general form of the Bellman equations. A similar
but slightly more tedious proof than that of Proposition 4.3 shows that this algorithm
finds optimal values. We leave the proof as an exercise.

CHAPTER 4. FINITE HORIZON MODELS 116

Proposition 4.4. Suppose for each hn ∈ Hn, n = 1, . . . , N , u′n(hn) is determined
by Algorithm 4.5. Then u′n(hn) = v∗n(hn) and u′1(s) = v∗(s) for all s ∈ S.

Optimality of Markov deterministic policies in ΠHR

What remains to be shown is that in (4.83), a deterministic decision rule attains the
“sup” over randomized decision rules and that un depends on hn = (hn−1, an, sn)
only through sn. We do this through two propositions. The first is an immediate
consequence of the second part of Lemma 2.1 and its proof is omitted.

Proposition 4.5. Suppose for each s ∈ S, As is finite, and u′n(hn), hn ∈ HN is
computed by Algorithm 4.5. Then

u′n(hn) = sup
w∈P(Asn)

{ ∑
a∈Asn

w(a)
∑
j∈S

pn(j|sn, a)(rn(sn, a, j) + u′n+1(hn+1))

}

= max
a∈Asn

{∑
j∈S

pn(j|sn, a)(rn(sn, a, j) + u′n+1(hn+1))

}
. (4.84)

Proposition 4.6. Suppose for each s ∈ S, As is finite, un(s) is computed by
Algorithm 4.3, and u′n(hn), hn ∈ Hn is computed by Algorithm 4.5. Then for
n = 1, . . . , N − 1 and each hn = (hn−1, an, sn) ∈ Hn, u′n(hn) depends on hn only
through sn. In other words, u′n(hn) = un(s).

Proof. We prove this result by induction. By construction, u′N(hN) = rN(sN) =
uN(sN). Assume now that u′t(h

t) = ut(s
t) for t = n + 1, . . . , N . By the induction

hypothesis and (4.84),

u′n(hn) = max
a∈Asn

{∑
j∈S

pn(j|sn, a)(rn(sn, a, j) + un+1(j))

}
(4.85)

where hn = (hn−1, an, sn). Observe that all the quantities on the right hand side of
(4.85) depend on hn only through sn. Hence, u′n(hn) = un(sn), the induction hypothesis
holds and the result follows.

The essence of Proposition 4.5 result is that randomization is not necessary when
there are a finite number of actions. Proposition 4.6 states that only the current state
matters if the transition probabilities, reward functions, and terminal reward do not

CHAPTER 4. FINITE HORIZON MODELS 117

depend on states prior to the current state. Together, these two results establish the
following two equalities:

sup
π∈ΠHR

vπn(hn) = max
π∈ΠHD

vπn(hn) = max
π∈ΠMD

vπn(sn). (4.86)

Thus, combining Propositions 4.4, 4.5 and 4.6 gives us Theorem 4.1. As a con-
sequence of Theorem 4.1, a Markovian deterministic policy is optimal over the set of
all history-dependent randomized policies. This justifies the restriction to Markovian
deterministic policies at the beginning of this chapter. More formally

v∗(s) = max
π∈ΠMD

vπ(s)

for all s ∈ S.

4.7 Bibliographic Remarks

The use of the backward induction to find optimal policies in a general Markov de-
cision process model originates with Bellman [1957], where on page 87 he also states
the Principle of Optimality. Precursors in specific application areas include Massé’s
work on reservoir management (Gessford and Karlin [1958]) and Wald’s research on
sequential analysis [Wald, 1947]. See Chapter 4 in Puterman [1994] for more on this
background.

Derman [1970] provides the first rigorous treatment in book form of the existence
of optimal Markovian deterministic policies in the class of history-dependent policies.
His approach differs considerably from that in this chapter. His book is well worth
reading for those interested in a concise exposition of Markov decision process theory.

For additional reading on relevant fundamentals in probability (e.g., nested condi-
tional expectations) and queuing (e.g., steady state equations of the M/M/1 queue),
the reader is referred to Feller [1982] and Kleinrock [1975].

The identification of structured optimal policies dates back at least to Scarf [1960],
who proves the optimality of (s, S) policies in a periodic review inventory model with
fixed ordering costs. Other examples include monotone optimal policies in queuing
models, control limit policies in replacement problems and structured policies in clinical
applications. Interpretability has become increasingly important in machine learning,
see, for example, Rudin [2019].

Our proof of optimality of monotone policies in queuing service rate control follows
Lippman [1975]. The use of submodularity in Markov decision processes originates
with the elegant paper of Serfozo [1976]. For more on this concept, see Section 4.4.2
of Puterman [1994]. As noted in Chapter 3, the online dating problem originates with
Cayley [1875]. Our analysis follows Bather [1980].

The concept of q-functions originates in the reinforcement learning literature, es-
pecially in the seminal paper by Watkins and Dayan [1992]. Our development follows
Bertseksas [2012].

CHAPTER 4. FINITE HORIZON MODELS 118

4.8 Exercises

1. Find an optimal policy for the model in Example 2.1 for N = 2 by enumerating
and evaluating all Markovian deterministic policies using Algorithm 4.1.

2. Find an optimal policy for the model in Example 2.1 for N = 4 and N = 5 using
Algorithm 4.3. For the same values of N , determine the smallest positive value
of rN(s) for each s that would result in a different optimal policy.

3. Show that the values of un(hn) computed using Algorithm 4.2 are equal to vπn(hn)
for all hn ∈ Hn and n = 1, . . . , N .

4. Consider a model in which S = {s0, s1}, As0 = {a = 1, 2, . . .}, As1 = {b},
r(s0, a) = 1− 1

a
, r(s1, b) = 0, p(s1|s0, a) = 1 and p(s1|s1, b) = 1.

(a) Represent the model graphically as in Figure 2.6.

(b) Show that an optimal policy does not exist.

(c) Show that for any ε > 0, there is a policy πε for which

vπ
ε

(s0) ≥ v∗(s0)− ε.

5. Prove in general that for any ε > 0 there always exists an ε-optimal policy.

6. Consider the model proposed in Exercise 1 in Chapter 2.

(a) Evaluate the expected total reward of the policy that uses action ai,1 in each
state in a 5-period model.

(b) Find an optimal policy and its value in a 5-period version of this model.

(c) Express the optimal equations in terms of q-functions.

7. For Example 2.1 with N = 2, use Algorithm 4.2 to evaluate the history-dependent
randomized policy in Section 2.5.2 with r2(s1) = r2(s2) = 0 and parameter values
q1,1 = 0.8, q1,2 = 0.4, q2,1 = 0.1, q2,5 = 0.5, q2,2 = 0.2, q2,3 = 0.3, q2,4 = 0.4 and
q2,6 = 0.6

8. Solve the restaurant revenue management problem (Exercise 12 from Chapter 3)
over a two-hour planning horizon. Clearly state and graphically represent the
optimal policy.

9. Consider a 5-period version of the periodic inventory review problem of Sec-
tion 3.2 with a finite warehouse of capacity of 10 units, no backlogging, a fixed
ordering cost of 12, a per unit ordering cost of 2, revenue of 5 per item sold, and
a holding cost of 1 per unit per period. Assume a scrap value of 1 per item. If
demand cannot be fulfilled by stock on hand after receipt of an order, it is lost.
Assume demand is geometrically distributed with p = 0.3.

CHAPTER 4. FINITE HORIZON MODELS 119

(a) Solve the problem assuming there is no delay between when the order is
placed and it arrives. Does the optimal policy have any obvious structure?

(b) Solve the problem assuming than when an order is placed and it arrives at
the end of the period after demand is met from stock on hand.

10. Consider the lion hunting problem from Section 3.4 with a horizon of N = 30.
Assume the lion only hunts gazelles. On a day it hunts, the lion catches a
young gazelle with probability 0.2 and edible biomass of 8kg, an adult gazelle
with probability 0.1 and edible biomass of 15kg, or nothing with probability 0.7.
Assume the following additional parameter values: C = 30, d = 6, h = 7, c0 = 6.
Formulate and solve this problem.

11. Consider the network shown in Figure 4.7.

Figure 4.7: Network for Problem 11.

(a) Formulate the shortest path problem on this network as a finite-horizon
Markov decision process where the states are the nodes and the actions are
what arc to follow in each node. Identify all shortest paths from node 1
to node 10 using backward induction. Note that the use of periods in this
example is artificial.

(b) This example has multiple shortest routes. Which would you prefer and
why?

(c) Find the longest path from node 1 to node 10 using backward induction. In
what application area might this be a useful problem to solve?

(d) Consider a modified network in which the arc from node 8 to node 7 has
been deleted. Solve a stochastic version of this problem in which there is
uncertainty about arc choice: if a node has two outgoing arcs, the chosen

CHAPTER 4. FINITE HORIZON MODELS 120

arc is followed with probability 0.8; if a node has three outgoing arcs, the
chosen arc is followed with probability 0.6 and each of the remaining arcs is
chosen with probability 0.2.

(e) Repeat the previous question but with the arc from node 8 to node 7 in-
cluded.

12. Consider the “Pulling the goalie” model in Section 3.9.1.

(a) Using the data at the end of that section, determine the optimal policy
for when Team A should pull its goalie. Assume decisions are made every
20 seconds and that Team A first considers this decision when there are 5
minutes remaining.

(b) Repeat this analysis for the situation when Team A’s opponent, Team B,
has a player in the penalty box.

13. Solve the single machine maintenance problem (Exercise 9 from Chapter 3), as-
suming it is a finite horizon problem with N = 5, using the following data:
r = 100, p(i) = (1− e−i)/(1 + e−i), cA = 60, cB = 20.

14. Solve the house selling problem from Section 3.8.2 with N = 7, fn(s) = 0.001s for
all n and Ln(s) = 0.05s for all n. Assume the initial list price of the house is $1M
and that the best offer on the first day follows a discrete uniform distribution
centered on the list price with a range of $100K in $10K increments. After the
first day, we assume the best offer follows a similar discrete uniform distribution,
but centered at the best offer from the previous day.

15. Consider the house selling problem in a hot housing market. The problem param-
eters are the same as in Exercise 14, except that the discrete uniform distribution
of the best offer on day n > 1 is centered at the best offer seen so far since the
start of the horizon.

16. Consider the house selling problem in an inflationary market. The central bank is
considering a one-time interest rate increase, which will depress the offer values
for the house by 5% compared to no rate increase. On each day, there is a
probability 0.1 that interest rates will increase, as long as there was no previous
increase. Modify the formulation accordingly and solve it using the parameters
from Exercise 14.

17. Solve the queuing service rate control problem from Section 4.3.1 with the fol-
lowing changes to the parameters: a horizon length of N = 6, a delay cost of
f(s) =

√
s and a serving cost of m(a) = 5a3. Comment on the monotonicity of

the optimal policy compared to the policies depicted in Figure 4.3.

18. Prove that (4.56) holds by induction.

CHAPTER 4. FINITE HORIZON MODELS 121

19. Prove that the sum of submodular functions is submodular.

20. Prove that if g(x, y) does not depend on x, that is g(x, y) = h(y) for some function
of y, that g(x, y) is submodular.

21. Consider the queuing admission control problem from Section 4.5.5. Derive the
optimality equations for the v and q value functions for the case of j = 0.

22. Consider a finite horizon version of the queuing admission control problem from
Section 4.5.5 with N = 10. Solve this problem using both the v and q value
functions. Assume b = 0.2, w = 0.2, h(j) = 5j, and R = 30. At the final epoch,
assume any remaining jobs in the system are penalized at a cost of 10 per job.
Discuss the computational effort required for the two approaches.

