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One must first have a strong foundation.

Sri Auribindo, Indian Philosopher 1872-1950

To appreciate the richness of Markov decision processes, one must learn the funda-
mentals. This chapter strives to facilitate this understanding by describing the basic
components of a Markov decision process: decision epochs, states, actions, transition
probabilities, and rewards. To apply the Markov decision process model to concrete
examples, one needs to identify each of these components.

After describing the basic components, we introduce several other fundamental
concepts, namely decision rules, policies, derived stochastic processes, and reward pro-
cesses. These are not part of the model definition, but arise naturally when using this
model and are derived from its basic components. We also present optimality crite-
ria, which provide a basis for comparing the quality of decisions. Detailed analysis of
Markov decision processes under these different criteria will be the focus of Chapters
4 – 6.

Our development focuses on discrete time models with discrete states and discrete
actions. We briefly discuss generalizations of this setting where appropriate. The
primary generalization that we cover in depth is continuous time models, which we
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present in Chapter 8. Models with continuous state spaces arise naturally in partially
observed Markov decision processes, which are discussed in Chapter 9.

2.1 Basic Model Components

A Markov decision process model describes the fundamental elements of a recurrent
problem faced by a decision maker. We represent it graphically in Figure 2.1.

Figure 2.1: The planning horizon and decision epochs in a finite horizon setting.

Time is divided into periods or stages with a period beginning at one decision epoch
and ending at the next decision epoch. At a decision epoch, a decision maker observes
the state of the system, chooses an action and as a result of this choice, the system
evolves to a new state according to a probability distribution that depends on the
current state and the choice of action. After making a decision, the decision maker
receives a reward during that period that depends on the current state, current action
and possibly the subsequent state. These steps repeat at each subsequent decision
epoch. Figure 2.2 summarizes these steps within one period. We formalize these
notions in the following subsections.

In this book, we use the expression decision maker to refer to a possibly animate
entity who is making decisions. In computer science and engineering, the decision
maker is often referred to as an agent or controller to reflect the possibility that an
inanimate entity chooses and executes decisions.

2.1.1 Planning Horizons and Decision Epochs

The planning horizon is the time interval over which decisions are made. We assume
that a Markov decision process model is either:

• A Finite Horizon Model, in which the planning horizon is a bounded interval of
time divided into N − 1 periods, or

• An Infinite Horizon Model, in which an unbounded interval of time is divided
into an infinite number of periods.
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Figure 2.2: Timeline showing key events in one period. The decision maker observes
state sn in epoch n and chooses action an. The state transitions to a state sn+1

according to the transition probabilities, the decision maker receives a reward rn, and
then the decision maker gets ready to choose a new action in epoch n+1 after observing
state sn+1.

Both of these model types are considered discrete time, since decisions are made at
discrete time points. We consider continuous time models in Chapter 8.

Each period begins with a decision epoch, a point in time at which the decision
maker observes the system state and chooses an action. The period ends immediately
before the subsequent decision epoch. For example, each day at midnight, a retailer’s
inventory management software observes the stock level of its products and decides
how many additional units of each product to order from suppliers. In this case, the
period would be a day, and each midnight is a decision epoch.

When the planning horizon is of finite length, our convention is to divide it intoN−1
periods instead of N , implying that there are N − 1 decision epochs and no decision is
made at the end of the planning horizon. Epoch N , which we refer to as the terminal
epoch, is included to evaluate the consequences of the decision at epoch N − 1. Using
N − 1 also leads to cleaner formulas. Accordingly, our convention is to refer to finite
horizon problems equivalently as N − 1-period problems. In a limited number of finite
horizon applications including the shortest path problem and sequential allocation,
decision epochs may index the order in which decisions are made, rather than pre-
defined points in time. Chapter 4 focuses on finite horizon models, while Chapters 5 –
6 focus on infinite horizon models.

As a convention going forward, we will use superscripts to denote epochs in our
notation for states and actions. For transition probabilities and rewards, we will refer
to the epoch using subscripts. The reason for this slight difference is that subscripts
for states and actions will be used to index different elements in the set of all states
and actions, respectively.
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2.1.2 States

The state of the system contains all relevant information available to the decision
maker at a decision epoch. By relevant, we mean that by knowing this information
and choosing an action, the transition probabilities and rewards are fully specified. Let
S denote the set of all states and s denote a specific state in S. We refer to S as the
state space and an s ∈ S as a state. States are necessarily mutually exclusive, the
system cannot occupy two different states at the same time.

Elements of S may be scalar (e.g., the inventory level of a single product) or vector-
valued (e.g., queue lengths of each priority class in a multi-class queuing system).
They may be ordered (e.g., the number of people in a queue) or abstract (e.g., the
configuration of a Tetris screen and the shape awaiting placement in the wall).

Although our primary focus in this book is on models with S being discrete and
finite, there are many possible generalizations, including choosing S to be countably
infinite or a subset (either bounded or unbounded) of finite-dimensional Euclidean
space. Also, specifically in network or decision analysis settings, S may vary with the
decision epoch, in which case one may use an epoch-specific state space Sn at epoch
n. An alternative is simply to define S as the union of Sn over all decision epochs n,
though this approach may unnecessarily expand the state space at each decision epoch
(because some states may not be reachable at certain epochs). We will proceed with
S being independent of the decision epoch to keep things simple.

2.1.3 Actions

Denote by As the set of actions available to the decision maker in state s ∈ S. We
refer to As as an action set and each a ∈ As as an an action. Actions are necessarily
mutually exclusive; that is, the decision maker cannot choose two actions at the same
time.

Like the state space, each As may be a finite set, a countably infinite set, a subset
of finite-dimensional Euclidean space, or an abstract set. Actions may be physically
interpretable (e.g., instructing a robot to turn left) or merely a list of values. The action
set may be independent of s, as in infinite capacity queuing control models where the
action is to decide whether to admit or not admit a job. Our development will focus
on As being discrete and finite. Assuming the states and actions are ordered, we will
denote by ai,j the j-th action in the i-th state.

Note that in some states, As may contain a single element corresponding to “no
action”. We refer to such states as non-actionable. These situations occur most often
when the system reaches a state s0 from which it cannot exit. In that case, As0 =
{Do nothing}. This happens in episodic models that terminate at random times such
as those in Section 3.8.
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2.1.4 Transition Probabilities

Let pn(j|s, a) denote the probability that the system state becomes j at decision epoch
n + 1 when the decision maker chooses action a in state s at decision epoch n for
n = 1, 2, . . . , N − 1. Note that several random events may occur between decision
epochs; the transition probability does not explicitly represent each one, but instead
represents the net change in state. As a probability, pn(j|s, a) has the following prop-
erties: pn(j|s, a) ≥ 0 for all j ∈ S, a ∈ As, s ∈ S and

∑
j∈S pn(j|s, a) = 1 for all

a ∈ As, s ∈ S. Note that in a non-actionable state, s0, with a0 representing the “Do
nothing” action, pn(s0|s0, a0) = 1.

When S represents an uncountable subset of finite-dimensional Euclidean space,
the transition probability may be represented by a probability density function. We
will require this level of generality in Chapter 9 on partially observed models.

When the transition probabilities do not vary over decision epochs, we refer to them
as stationary. For infinite horizon models presented in this book, we assume transition
probabilities are stationary, and thus drop the subscript n from the notation.

2.1.5 Rewards

We consider two representations for the reward: rn(s, a, j) and rn(s, a). The quantity
rn(s, a, j) denotes the reward received in period n when the decision maker chooses
action a in state s at decision epoch n and the system transitions to state j at decision
epoch n+ 1. The latter quantity, rn(s, a), has a similar interpretation, but is indepen-
dent of the subsequent state. The choice of reward function depends on the application
– usually one of these two forms better describes a specific context. The examples in
Chapter 3 will illustrate both cases.

We assume rn(s, a, j) and rn(s, a) are scalar and real-valued. Generalizations in-
clude vector-valued or abstract rewards. For example, as the result of an action in a
fantasy game, the decision maker may receive a sword, a shield and a vial of magic
potion. Instead of keeping track of this bundle of goods in the reward function, the
decision maker will assign a numerical value to each item and be indifferent between
collections of items with the same total value.

We refer to these quantities as rewards because we model a decision maker seeking
to maximize rewards. We represent costs as negative rewards to allow for a decision
maker who seeks to minimize costs. Consequently, minimizing costs corresponds to
maximizing rewards.

When using optimality criteria based on expected rewards (see Section 2.2.5), the
quantity rn(s, a) can also represent the expected reward in period n where the expec-
tation is taken over the possible states at decision epoch n+ 1:

rn(s, a) =
∑
j∈S

rn(s, a, j)pn(j|s, a). (2.1)

In discrete time models, the model formulation does not depend on how the re-
ward is accumulated during the period. For example, in an inventory control model
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with weekly decision epochs, the inventory levels may change during the week resulting
in varying holding costs between decision epochs. A discrete time formulation accu-
mulates all of these costs and summarizes them in the reward function for that one
period.

In finite horizon models, we specify a terminal reward or scrap value rN(s) to
represent the consequence of ending the planning horizon in state s. In infinite horizon
models, we omit the terminal reward. Furthermore, we delete the subscript n from
the reward function in the infinite horizon setting, since our focus in that case is on
stationary rewards.

2.1.6 Markov Decision Processes and Decision Trees

A decision tree provides a visual display of the basic model components. In Figure 2.3
square boxes represent states, arcs from boxes to circles represent possible actions in
each state, arcs from circles to subsequent states denote transitions that occur according
to a transition probability and result in a reward.

It should be evident from the decision tree representation that, in general, there is
an exponential explosion in the possible trajectories through the tree as we increase
the length of the planning horizon.

2.2 Derived Objects

A Markov decision process is fully specified by the five model components described
in the previous section: the planning horizon, the set of states, the sets of actions,
the transition probabilities and the rewards. In this section, we describe decision
rules, policies, derived stochastic processes and reward processes, which are not part
of the basic formulation, but are fundamental concepts derived from the basic model
components.

2.2.1 Decision Rules

A decision rule describes both the information and mechanism a decision maker uses
to select an action in a given state at a single, specific decision epoch. Decision rules
can be classified on the basis of these two independent dimensions:

• Information: Markovian vs. history-dependent

• Mechanism: Deterministic vs. randomized

The Markovian versus history-dependent dichotomy describes the information used
by the decision maker when choosing an action. A Markovian decision rule uses only
the state at the current decision epoch to select actions, while a history-dependent
decision rule uses some or all of the previous states and actions up to and including
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Figure 2.3: Representing a Markov decision process by a decision tree.

the current state when choosing an action. That is, at decision epoch n, a Markovian
decision rule is a function of sn and a history-dependent decision rule is a function
of some or all of (s1, a1, s2, . . . , an−1, sn). Thus, a Markovian decision rule is a special
case of a history-dependent decision rule in which the history is summarized in a single
state. We write

Hn = {(s1, a1, s2, . . . , an−1, sn) : s1 ∈ S, a1 ∈ As1 , s2 ∈ S, . . . , an−1 ∈ Asn−1 , sn ∈ S}
(2.2)

as the set of all histories, hn, leading up to decision epoch n. Note that H1 = S. While
the past sequence of rewards could also be explicitly included in the history, we view
its inclusion as redundant since the history of states and actions alone allows us to
reconstruct the past rewards through the reward functions. Note that h1 = s1 and for
n = 2, 3, . . . , N ,

hn = (hn−1, an−1, sn). (2.3)

We will use this recursion explicitly in Section 4.1.4.
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The deterministic versus randomized dichotomy describes the mechanism used to
select an action at a given decision epoch. A deterministic decision rule selects an
action with certainty, while a randomized decision rule selects an action according to
a specified probability distribution. A deterministic decision rule is a special case of a
randomized decision rule corresponding to a degenerate probability distribution (i.e.,
all of the probability mass being placed on one action).

The above taxonomy leads to four classes of decision rules.

• A Markovian deterministic decision rule (MD), dn, is a function from states to
actions. More formally, dn(sn) = an denotes the decision rule that at decision
epoch n chooses action an ∈ Asn when the system is in state sn ∈ S.

• A history-dependent deterministic decision rule (HD), dn, is a function from the
set of histories to actions. More formally, dn(hn) = an denotes the decision rule
that chooses action an ∈ Asn when the system history is hn ∈ Hn and sn is the
state at decision epoch n. The subtlety here is that although the decision rule’s
action choice may vary with history, it can only choose actions from the set Asn
at epoch n, which depends only on the state at decision epoch n. This means
that given two different histories hn and hn′ that both arrive at state sn, dn(hn)
and dn(hn′) may choose different actions, but each action will be chosen from the
same action set Asn .

• A Markovian randomized decision rule (MR), dn, is a mapping from the state
space to the set of probability distributions over the action set. More formally,
it specifies a probability distribution

wndn(sn, an) := P [Yn = an],

where the random variable Yn denotes the action chosen at decision epoch n,
an ∈ Asn and sn is the system state at decision epoch n.

• A history-dependent randomized decision rule (HR), dn, is a mapping from the set
of histories to the set of probability distributions over the action set. It specifies
a probability distribution

wndn(hn, an) := P [Yn = an], (2.4)

where the random variable Yn denotes the action chosen at decision epoch n,
an ∈ Asn when the system history is hn ∈ Hn and sn is the system state at
decision epoch n.

We denote these classes of decision rules as DMD, DHD, DMR and DHR, respectively.
It is important to note that because of the ability to construct history-dependent

decision rules, the Markov decision process formulation gives rise to a system that
might not evolve in a Markovian fashion. The expression “Markov decision process”
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refers to the fact that rewards and transition probabilities depend on the past only
through the state and action at the present decision epoch. It does not, however, mean
that every stochastic process generated by this model is a Markov chain. See Section
2.2.3 below for more on this point.

We will argue that for most optimality criteria, it is not necessary to consider ran-
domized decision rules when seeking optimal policies. However, the linear programming
formulation of the Markov decision process model and some policy-based reinforcement
learning algorithms are based on the continuity properties of randomized decision rules
(see Chapter 12).

2.2.2 Policies

A policy π, also referred to as a contingency plan or strategy, is a sequence of de-
cision rules, one for each decision epoch. In finite horizon models, we write π =
(d1, d2, . . . , dN−1). In infinite horizon models, π = (d1, d2, . . . ). Once an optimality
criterion has been specified, the decision maker’s goal is to find an optimal policy –
one that maximizes or minimizes the particular criterion.

The four classes of decision rules defined in Section 2.2.1 form four classes of policies,
ΠMD, ΠHD, ΠMR and ΠHR. In addition, we define stationary deterministic (SD) and
stationary randomized (SR) policies, denoted by the classes ΠSD and ΠSR, respectively.
A stationary policy chooses the same decision rule at every decision epoch and will be
represented as π = (d, d, . . . ).

Some comments about policies follow:

1. The class ΠHR denotes the most general class of policies; all policies we consider in
the book are in this class. We require this level of generality to define optimality,
but we will often not require this level of generality to find optimal policies. For
example, in finite horizon models it will be sufficient to restrict one’s search for
an optimal policy to the class of Markovian deterministic policies (see Section
2.4).

2. Policies in ΠHR generally cannot be implemented in long finite horizon or infinite
horizon models because storage requirements increase exponentially with respect
to the planning horizon length. Fortunately, in finite horizon models, there exist
optimal policies in this class that are Markovian and deterministic, and in infinite
horizon models, there exist optimal policies that are stationary and deterministic.

3. Stationary policies are most relevant to infinite horizon models. Results in Chap-
ters 5 – 6 will use the result that there exist stationary deterministic policies that
are optimal in the class of history-dependent randomized policies under several
different optimality criteria.

4. In finite horizon models, a Markovian deterministic policy may be characterized
by a lookup table. A lookup table is an array in which rows correspond to states,
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columns correspond to decision epochs and an entry indicates which action the
policy selects in that state at that decision epoch. Although a useful conceptual
framework, a lookup table may be an impractical method of encoding a policy
in models with a large number of states. Chapter 10 on approximate dynamic
programming provides some approaches for addressing this challenge.

5. Figure 2.4 summarizes the relationship between policy classes. Although not
represented in the figure, there exist policies that are stationary and history-
dependent (i.e., non-Markovian). See Exercise 3. However, they represent “edge
cases” and are uncommon. Thus, in this book, we only consider stationary
policies within the Markovian class.

Figure 2.4: Relationships between policy classes. Labels immediately outside of an
oval denote the entire oval, whereas labels inside the intersection of two ovals denote
the entire intersection between them. For example, SD is the intersection of SR and
HD. MD is the intersection of MR and HD, which includes SD (i.e., any region with
orange tint).

2.2.3 Derived Stochastic Processes

Once a policy is chosen and a probability distribution over the starting state of the
process is specified, the probabilistic evolution of a Markov decision process is com-
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pletely determined. Let the random variable X1 denote the initial state of the Markov
decision process and let γ(s) := P [X1 = s] denote the initial state probability distri-
bution, which we assume is independent of policy choice. When the system starts in a
specific state at decision epoch 1, say s1, we write γ(s) = 1 for s = s1 and γ(s) = 0 for
s 6= s1. Let π denote a policy for either a finite or infinite horizon problem. Let the
random variable Y1 denote the action chosen by d1 at decision epoch 1. Now, there are
two potential sources of variability that affect Y1:

1. Variability in X1, which occurs when X1 is random, and

2. Variability in action choice in X1, which occurs if d1 is a randomized decision
rule.

Once Y1 is chosen, the next state, X2, is random with a distribution determined by
the transition probabilities. This is true even ifX1 and Y1 are not random, i.e., when the
system starts in a specific state s1 and d1 is deterministic, respectively. Consequently,
the second action Y2 will be random as well, and so on. Thus, a policy and initial state
distribution generates the stochastic process

(X1, Y1, X2, Y2, . . . , XN−1, YN−1, XN) (2.5)

in a finite horizon model and

(X1, Y1, X2, Y2, . . .) (2.6)

in an infinite horizon model.
Some comments about policies with respect to derived stochastic processes follow:

1. When π ∈ ΠMR, the stochastic process is a discrete time Markov chain. See
Exercise 4.

2. When π is history-dependent, the stochastic process need not be a Markov chain.
That is, at each decision epoch, state and action, the transition probabilities may
depend on all or some of the past. See Exercise 4.

3. The policy π induces a probability distribution pπ on (X1, Y1, X2, Y2, . . .). To
determine it requires enumerating realizations and multiplying the transition
probabilities and action randomization distributions as follows:

(a) For π ∈ ΠHR,

pπ(s1, a1, s2, a2, s3, . . .)

= γ(s1)w1
d1(h1)(s

1, a1)p1(s2|s1, a1)w2
d2(h2)(s

2, a2)p2(s3|s2, a2)w3
d3(h3)(s

3, a3) . . .

(2.7)
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where h1 = s1, h2 = (s1, a1, s2), and so on. Recall that wnd(h)(s, a), defined
in Section 2.2.1, denotes the probability that decision rule d chooses action
a in state s at epoch n given history h.

Note that the entire history first enters into this expression through the
randomization distribution at decision epoch 2 and subsequently, but not
through the transition probabilities, which only depend on the state and
action. If a deterministic policy was used, the history would also only enter
through the decision rule as in (2.7), but the decision rule would explicitly
choose the action in each transition probability.

(b) For π ∈ ΠMD

pπ(s1, a1, s2, a2, s3, . . .) = γ(s1)p1(s2|s1, a1)p2(s3|s2, a2) . . . (2.8)

since d1(s1) = a1, d2(s2) = a2, and so on. In this case, we need only multiply
transition probabilities with each other (and the initial state distribution)
to find the probability distribution of the stochastic process generated by π.

2.2.4 Reward Processes

As noted in Section 2.2.3, a policy π generates a stochastic process of states and actions
represented by (2.5) for finite horizon models and (2.6) for infinite horizon models with
distribution pπ(·) defined in (2.7) in the most general case. These processes generate
corresponding stochastic processes of rewards

(r1(X1, Y1, X2), r2(X2, Y2, X3) . . . , rN−1(XN−1, YN−1, XN), rN(XN)) (2.9)

for finite horizon models, and

(r1(X1, Y1, X2), r2(X2, Y2, X3), . . .) (2.10)

for infinite horizon models. We can write these stochastic processes more compactly
as

(R1, R2, . . . , RN) (2.11)

and
(R1, R2, . . .), (2.12)

respectively, where Rn is the random variable denoting the reward in epoch n. The dis-
tribution of rewards can be derived from pπ(·) by noting which states and actions map
into the same reward value. We illustrate this approach in Table 4.1 when analyzing a
two-state model.

In a simulated environment, the value of each realized sequence may differ. The
probability distribution of this sequence of random variables describes how these values
vary from realization to realization. It may be estimated empirically by the relative
frequency of each realization in the simulation. We will see that the computational
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algorithms that appear below avoid calculating or estimating this distribution. We
refer to it so as to enhance understanding of the basic principles.

Following convention, we refer to a stochastic process together with a reward func-
tion as a reward process. When the stochastic process is a Markov chain, we refer to it
as a Markov reward process. Markov reward processes mostly arise as the sequence of
rewards of a Markovian policy in a Markov decision process. However, they may arise
naturally in particular applications, as in Section 10.3.2.

2.2.5 Evaluating Reward Processes

Next, we show how reward processes lead to decision making criteria. As noted in
Section 2.1.5, we will assume that the reward functions rn are real-valued scalars so
that each Rn, as defined implicitly through (2.11) or (2.12), is real-valued. Thus, the
random reward sequence (R1, R2, . . . , RN) takes values in <N and (R1, R2, . . .) takes
values in <∞.

To assess the value of a sequence of rewards, a decision maker may use expected util-
ity, defined as follows. Let u(·) denote a real-valued function on <N or <∞, and let E[·]
denote expectation with respect to the probability distribution of (R1, R2, . . . , RN) or
(R1, R2, . . . ). The expected utility of these reward sequences equals E[u(R1, R2, . . . , RN)]
or E[u(R1, R2, . . .)], respectively.

Often utility functions are additive, so

u(R1, R2, . . . , RN) =
N∑
n=1

un(Rn) (2.13)

for N finite or infinite, and where un(·) is a real-valued function for each n. When N
is finite, the expected utility becomes

E[u(R1, R2, . . . , RN)] = E

[
N∑
n=1

un(Rn)

]
(2.14)

and when N is infinite, it becomes

E[u(R1, R2, . . .)] = E

[
∞∑
n=1

un(Rn)

]
. (2.15)

Note that when N is infinite, we require conditions on un(Rn) to ensure the limit
implicit in the infinite sum exists. We elaborate on this issue in Sections 2.3.1 and
2.3.2.

A decision maker chooses un to reflect their attitude towards risk and towards
receiving rewards at different points of time. Common choices for un include un(r) = r
and un(r) = λn−1r where 0 ≤ λ < 1. The quantity λ is referred to as a discount factor.
The discount factor λ represents the present value of one unit of reward received one
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time period in the future. For example, if λ = 0.95, the decision maker would be
indifferent between receiving one unit of reward next period and 0.95 units of reward
in this period.

By using E[un(Rn)] = E[Rn] to make decisions, a decision maker is said to be risk
neutral. For example, a risk neutral decision maker would be indifferent between the
following two gambles since they have the same expected value:

• Gamble A: win $100 with probability 1

• Gamble B: win $0 with probability 0.5 and $200 with probability 0.5

A risk seeking decision maker would prefer Gamble B and a risk averse decision maker
would prefer Gamble A to Gamble B. Example utility functions for these two cases are
u(r) = r2 and u(r) =

√
r, respectively. Which would you prefer? Why?

The Markov decision process models we consider in this book will focus on decision
making by risk neutral decision makers, i.e., where the utility function is replaced
by the rewards directly. The majority of the literature on Markov decision processes
considers this case. However, it is important to be aware that other utility functions
apply, and optimal policies with respect to one utility function will not necessarily be
optimal with respect to a different utility function. For example, consider coaching
decisions in a football game. If the team is behind near the end of the game, the coach
may be risk seeking in an attempt to catch up. Alternatively, if the team is ahead, the
coach may choose to make more conservative decisions, based on a risk averse utility
function, in order to hold on to the lead. See Exercise 2d for an example.

2.3 Optimality Criteria: Turning a Markov Deci-

sion Process into a Markov Decision Problem

Up to this point, we have formulated the Markov decision process without considering
the decision maker’s preferences for reward sequences generated by different policies.
In this section, we introduce the following three optimality criteria that are commonly
used to evaluate and compare policies:

• expected total reward,

• expected discounted total reward, and

• long-run average reward.

The first criterion applies to both finite and infinite horizon models, while the latter two
are most useful in infinite horizon models. A policy is optimal when it maximizes the
appropriate criterion over the set of all history-dependent randomized policies. To be
precise, we define a Markov decision problem to be a Markov decision process together
with a given optimality criterion. However, as with most of the published literature,
we will continue to use the general phrase Markov decision process to refer to both
cases, whether an optimality criterion is included or not.
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2.3.1 Expected Total Reward

In this section, we define the expected total reward optimality criterion. We refer to
the expected total reward of a policy as its value and denote it by vπ(s) for policy π
when the system is in state s. Implicit in this notation for the finite horizon setting is
that vπ(s) gives the value for a model with N − 1 decision epochs and terminal epoch
N .

Finite Horizon

Given a sequence of random rewards (R1, R2, . . . , RN), we define its Expected Total
Reward as

E

[
N∑
n=1

Rn

]
. (2.16)

To define the expected total reward of a policy, recall from Section 2.2.3 that a
policy π generates a random sequence

((X1, Y1), (X2, Y2), . . . , (XN−1, YN−1), XN)

of state-action pairs plus the terminal state. Note that we represent this stochastic
process slightly differently than the one from Section 2.2.3 by explicitly grouping the
state and action for each decision epoch together. The two stochastic processes are
identical, but this way of grouping makes the connection with the reward process
clearer.

Corresponding to this random sequence of state-action pairs is a sequence of rewards
(R1, R2, . . . , RN), which is generated as the process evolves over time according to (2.9).
Under policy π, for each s ∈ S, the expected total reward is

vπ(s) := Eπ

[
N∑
n=1

Rn

∣∣∣∣X1 = s

]
. (2.17)

The expectation in (2.17) is taken with respect to the probability distribution of random
rewards that occur under different realizations of the stochastic process determined by
π as described in Section 2.2.4.

If you were to simulate this process, you would proceed (in the forward direction)
as follows: specify π = (d1, d2, . . . , dN−1) and a starting state s1, use d1 to generate Y1

(if d1 is a randomized decision rule, then sample from the corresponding probability
distribution; if it is deterministic, use d1(s1)), use the transition probability distribution
to generate X2, compute R1 from an explicit formula or table, repeat this process until
decision epoch N − 1, and then add in the value of the reward at terminal epoch N .
Because of the stochastic nature of this process, every simulation would result in a
different sequence of random variables and expected total reward. You would then
estimate the expected total reward starting in state s1 as the average over multiple
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simulation replicates. The following algorithm formalizes this simulation procedure for
a single replication; we will refer to it later on.

Algorithm 2.1: Simulation to compute total reward of a finite horizon
Markov decision process starting from a given state s1 and with a given policy
π.
1 Set n = 1 and v = 0. Fix π = (d1, d2, . . . , dN−1) and s1.
2 while n < N do
3 Determine an using dn(sn)
4 Sample sn+1 from pn(·|sn, an)
5 Compute rn(sn, an, sn+1)
6 v ← v + rn(sn, an, sn+1)
7 n← n+ 1

8 v ← v + rN(sN)

Note that step 3 of the algorithm depends on whether the decision rule is ran-
domized or deterministic. Chapter 11 focuses on simulation-based methods for solving
MDPs. As an alternative to simulation, Chapter 4 will develop a straightforward ap-
proach to compute vπ(s) numerically or analytically for any s ∈ S and any π. However,
in very large problems, such as those with large state spaces, simulation may be useful.

Under a Markovian deterministic policy, the random state-action pair sequence may
be represented by

((X1, d1(X1)), (X2, d2(X2)), . . . , (XN−1, dN−1(XN−1)), XN)

and the random reward sequence by

(r1(X1, d1(X1), X2), . . . , rN−1(XN−1, dN−1(XN−1), XN), rN(XN)).

In this case, (2.17) becomes

vπ(s) = Eπ

[
N−1∑
n=1

rn(Xn, dn(Xn), Xn+1) + rN(XN)

∣∣∣∣X1 = s

]
. (2.18)

When one-period rewards do not depend on the subsequent state, the random
reward sequence simplifies to

(r1(X1, d1(X1)), r2(X2, d2(X2)), . . . , rN−1(XN−1, dN−1(XN−1)), rN(XN))

and (2.18) becomes

vπ(s) = Eπ

[
N−1∑
n=1

rn(Xn, dn(Xn)) + rN(XN)

∣∣∣∣X1 = s

]
. (2.19)

To simplify the notation, we will often write Eπ
s [·] instead of Eπ[·|X1 = s].
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Infinite Horizon

Following a development similar to the finite horizon setting, we write the expected
total reward of a policy π in the infinite horizon setting as

vπ(s) := lim
N→∞

Eπ
s

[
N∑
n=1

Rn

]
. (2.20)

Expressions similar to (2.18) and (2.19) can be written for the infinite horizon case
when the policy is Markovian deterministic and when the reward does not depend on
the subsequent state, respectively. We omit them here for brevity.

We say that a policy π∗ is optimal if

vπ
∗
(s) ≥ vπ(s) (2.21)

for all s ∈ S and π ∈ ΠHR. Chapter 4 analyzes finite horizon Markov decision process
models under this optimality criterion.

In contrast to the finite horizon setting, we now have to be concerned with whether
the above limit exists. Some possible limiting behaviors for this (or any) sequence
include:

• Convergence: occurs when E[Rn] decreases sufficiently quickly or becomes zero
eventually,

• Divergence: occurs when E[Rn] remains sufficiently positive or negative,

• Oscillation: occurs when E[Rn] alternates between positive and negative values
and does not die out.

When using the expected total reward criterion, the Markov decision process liter-
ature has focused on models in which the limit in (2.20) exists. Most examples of this
kind are optimal stopping problems, which contain zero-reward or reward-free absorb-
ing states. That is, they contain a state that, once reached, the system never leaves
and which generates zero reward going forward, effectively ending the infinite horizon
process. In such problems, the decision maker attempts to delay reaching an absorbing
state as long as possible when rewards are mostly positive. When rewards are mostly
negative, the decision maker attempts to reach an absorbing state as quickly as possi-
ble. These models are also referred to as stochastic shortest path models. See Sections
3.4, 3.7, and 3.8 for concrete examples of such problems.

The reinforcement learning literature refers to these optimal stopping models as
episodic. This is because the decision maker learns optimal behavior by “playing” or
simulating the decision process from initial state to absorption over many episodes and
developing methods for identifying which policies produce the best outcomes. We will
elaborate more in Chapter 12.
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2.3.2 Expected Total Discounted Reward

In contrast to the expected total reward criterion, expected total discounted rewards
takes into account the time value of money – that is, a reward of 1 unit at some future
epoch is worth less than a reward of 1 unit in the first epoch.

Finite Horizon

We define the Expected Total Discounted Reward as

E

[
N∑
n=1

λn−1Rn

]
, (2.22)

where 0 ≤ λ < 1 is a discount factor. In finite horizon models, discounting has no im-
pact on theory or algorithms, but may affect a decision maker’s preference for policies.
For example, with a discount factor closer to 0, a decision maker will prefer actions
that lead to larger immediate rewards, compared to the situation with a discount factor
closer to 1.

Analogous to the expected total reward case, the expected total discounted reward
of policy π, for each s ∈ S, is written

vπλ(s) := Eπ
s

[
N∑
n=1

λn−1Rn

]
, (2.23)

where the expectation is respect to the probability distribution of random rewards
that result under different realizations of the stochastic process determined by π as
described in Section 2.2.4. Similar expressions as (2.18) and (2.19) can be written for
the expected total discounted total rewards cases, which we omit here for brevity.

Infinite Horizon

Discounting plays a fundamental role in the application and analysis of infinite horizon
models. In the infinite horizon setting, the expected total discounted reward of policy
π for each s ∈ S is

vπλ(s) := lim
N→∞

Eπ
s

[
N∑
n=1

λn−1Rn

]
(2.24)

Unlike the expected total reward case, we do not require E[Rn] to decay sufficiently
quickly for the infinite sum (2.24) to converge, only that E[λn−1Rn] decays sufficiently
quickly. Because of the discount factor, future rewards shrink at a geometric rate.
As a result, if E[Rn] stays constant or even grows slowly, discounting may be enough
to ensure the infinite sum converges. This is what makes expected total discounted
reward such a useful optimality criterion in infinite horizon Markov decision processes.

A widely applicable and easily verifiable condition for this infinite sum to converge
is for the absolute value of the rewards to be bounded. For example, suppose that for
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some finite M , |r(s, a, j)| ≤M for all a ∈ As , s ∈ S and j ∈ S. Then the formula for
the sum of a geometric series

∑∞
n=1 λ

n−1 = 1/(1− λ) leads to

vπλ(s) ≤
∞∑
n=1

λn−1M =
M

1− λ (2.25)

for all π ∈ ΠHR. Equation (2.25) illustrates the key role of the assumption that λ < 1.
If λ = 1 the series may not converge even when rewards are bounded. Note that
choosing λ = 1 is equivalent to evaluating reward sequences with the expected total
reward criterion.

Discounting arises naturally in models where rewards are units of currency. Due to
inflation, near-term rewards are preferable to future rewards. Discounting also arises
in another, rather surprising way. Suppose the planning horizon length is not fixed but
represented by a random variable, T , distributed according to a geometric distribution
with parameter 1− λ, independent of {(X1, Y1), (X2, Y2), . . .}. That is,

P (T = n) = (1− λ)λt−1 (2.26)

for t = 1, 2, . . .. The random variable T may be regarded as the time until the first
“success” in an independent, identically distributed series of Bernoulli trials with “suc-
cess” probability 1− λ. We can write the expected value over T of the expected total
reward over a horizon of (random) length T as

ET

[
Eπ
s

[
T∑
n=1

Rn

]]
, (2.27)

where ET denotes the expectation with respect to T . It turns out that the expression
in (2.27) equals vπλ(s). See Exercise 7.

This result provides an alternative interpretation for discounting. What it means
is that discounting models a Markov decision process in which the decision maker uses
expected total reward to evaluate policies but the system may terminate at a random
time independent of the decision maker’s policy. This is particularly appropriate in ap-
plications where the process can terminate suddenly, such as animal foraging, when the
animal might die of unanticipated causes (e.g., predation) independent of its decision
making. See Section 3.4 for such an example.

We say that a policy π∗ is discount optimal if

vπ
∗

λ (s) ≥ vπλ(s) (2.28)

for all s ∈ S and π ∈ ΠHR. Chapter 5 analyzes infinite horizon Markov decision process
models under this optimality criterion.
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2.3.3 Long-Run Average Reward

In contrast to discounting, which emphasizes short term behavior, the long-run aver-
age reward criterion focuses on steady state or limiting behavior of derived stochastic
processes. For that reason, the long-run average reward is most appropriate for infinite
horizon, non-terminating models with frequent decision epochs. Note that in the finite
horizon setting, average reward is equivalent to expected total reward. As an example,
consider a queuing system in which the decision maker inspects the system state very
frequently, such as every second, and decides which service rate to use. Section 3.3
provides a rigorous formulation of such a problem. For such a problem:

• Expected total rewards would not be able to distinguish between policies
because costs or rewards would be unbounded.

• Expected discounted rewards would not be appropriate because the decision
maker is interested in long-term system performance. Given the time scale of
decision making, rewards at future decision epochs should not be less valuable
than current rewards.

We define the long-run average reward or gain, gπ(s) of policy π for s ∈ S as

gπ(s) := lim
N→∞

Eπ
s

[
1

N

N∑
n=1

Rn

]
. (2.29)

Note that the limit in (2.29) exists for all stationary policies when S is finite, as will
be shown in Chapter 7. It need not exist when S is countable or policies are history-
dependent. The quantity gπ is sometimes referred to as the gain because the expected
total reward in state s grows at rate gπ(s) per epoch in the limit.

A policy π∗ is average reward optimal or gain optimal if

gπ
∗
(s) ≥ gπ(s) (2.30)

for all π ∈ ΠHR and s ∈ S. Chapter 7 analyzes infinite horizon Markov decision
process models under this optimality criterion. Note that analysis of the long-run
average reward criterion requires knowledge of Markov chain theory, while discounting
does not.

2.4 A One-Period Problem: A Fundamental Build-

ing Block

One-period models are the basic building blocks of Markov decision process models.
Most of the algorithms we present later in the book are based on decomposing a
multi-period model into a series of interlinked one-period models. A one-period model
begins with a decision epoch, evolves for one period of time and ends at the terminal
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non-decision epoch. Thus, it is the simplest representation of a finite horizon Markov
decision process, where N = 2, a policy consists of a single decision rule, and the
derived stochastic process is (X1, Y1, X2). Figure 2.5 illustrates the timing of events
and the nomenclature of the one-period problem.

Figure 2.5: Illustration of timing of events and notation for the one-period problem.

Let S denote the state space and As denote the sets of actions defined for each s ∈ S.
We assume for simplicity that S and each As are discrete and finite. Let r1(s, a, j)
denote the reward function in period 1, p1(j|s, a) denote the transition probability
function in period 1, and r2(j) denote the terminal reward function. We use this
simple model to help build intuition for more complex models.

For a policy π, let vπ(s) be the expected total reward when the process starts with
certainty in state s at decision epoch 1. It is given by

vπ(s) := Eπ
s [r1(X1, Y1, X2) + r2(X2)], (2.31)

where the expectation is with respect to the probability distribution of (X1, Y1, X2)
induced by policy π when the system starts in state s ∈ S. The assumption that the
system starts in state s with certainty implies that X1 = s.

Assume for now that π = (d1) is deterministic and d1(s) = ā. Since s and d1(s) = ā
are specified, the only random quantity above is X2. (If d1 was randomized, Y1 would
also be random.) Under this assumption, (2.31) is equivalent to

vπ(s) =
∑
j∈S

p1(j|s, ā)(r1(s, ā, j) + r2(j)). (2.32)

Observe that to compute vπ(s), we only need the distribution of X2 and not the dis-
tribution of r1(X1, Y1, X2) + r2(X2) because ā has been specified. Consequently, this
avoids an enumeration of all of the latter’s possible values as described in Section
2.2.4. Expressions of the form (2.32) appear frequently in the book, so it is important
to understand why (2.32) is equivalent to (2.31).
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Now, note that vπ(s) is bounded above by the largest value possible for the right
hand side of (2.32) over all actions a ∈ As, that is,

vπ(s) ≤ max
a∈As

{∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
. (2.33)

This bound holds for any choice of π, or equivalently d1 in the one-period model.
Consider any d∗1(·) with the property that for any s ∈ S,

d∗1(s) ∈ arg max
a∈As

{∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
, (2.34)

where the argmax function returns the set of actions in As that maximize the expected
total reward expression inside the braces. In other words for any d∗1(s) satisfying (2.34),∑

j∈S

p1(j|s, d∗1(s))(r1(s, d∗1(s), j) + r2(j)) =

max
a∈As

{∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
(2.35)

Then π∗ = (d∗1) maximizes the one-period reward among all deterministic polices.
That is,

vπ
∗
(s) = max

π∈ΠMD
vπ(s)

Note that in a one-period model, there is no distinction between Markovian and history-
dependent policies.

Several noteworthy observations follow:

1. Greedy Actions: We refer to any action that achieves the maximum in the
right hand side of (2.34) as a greedy action.

2. Independent Problems: To find an optimal policy in this model, one solves
an independent problem (2.34) for each state s ∈ S.

3. Trade-offs: The expression on the right-hand side of (2.33) appears frequently
in solution algorithms for Markov decision processes. This maximization high-
lights the trade-off between the immediate reward r1(s, a, j) and a future reward
r2(j). This notion of balancing a current or myopic reward with future rewards
is fundamental to Markov decision processes.

4. Future Values: The future reward is encapsulated in the model component
r2(X2) in the one-period model. An important question in multi-period finite
or infinite horizon models is: “Can the future reward be replaced with a single
function that captures the cumulative reward associated with system evolution
beyond the current decision epoch?” The answer is “yes”, and we elaborate on
this key concept in Chapters 4 – 12.
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2.4.1 Randomized policies are not necessary*

The development above finds an optimal policy in the class of Markovian deterministic
policies by applying (2.34) for each s ∈ S. What remains is to show that a policy
chosen by (2.34) is optimal within the larger class of Markovian randomized policies.

Let P(As) denote the set of probability distributions on As. Each w ∈ P(As)
corresponds to a different randomized decision rule. Since P(As) is not finite we write
sup instead of max in (2.36) below.

This section shows that

sup
w∈P(As)

{∑
a∈As

w(a)
∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
(2.36)

is equal to

max
a∈As

{∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
. (2.37)

To see this, first note that (2.36) is greater than or equal to (2.37), since any optimal
action from (2.37) corresponds to a degenerate probability distribution in (2.36) with
all the probability mass placed at that action. To see that these two expressions are in
fact equal, consider an optimal probability distribution from (2.36) that puts positive
probability mass on two or more actions. All of these actions must have the same
expected total reward. Thus, a degenerate probability distribution that puts all mass
on one of those actions would also have the same expected total reward. Put more
simply, the weighted average of a set of values cannot be larger than every one of the
individual values.

Lemma 2.1 which will be used often in the rest of the book, formalizes the above
argument in greater generality.

Lemma 2.1. Let U be an arbitrary finite set, let f(·) be a real-valued function on
U , and w(·) be a probability distribution on U . Then,

1. maxu∈U f(u) ≥∑u∈U w(u)f(u), and

2. maxu∈U f(u) = supw∈P(U)

∑
u∈U w(u)f(u)

Proof. To prove part 1, define f̄ = maxu∈U f(u). Then

f̄ =
∑
u∈U

w(u)f̄ ≥ max
u∈U

f(u).

To prove part 2, choose u∗ ∈ arg maxu∈U f(u) and define w∗ ∈ P(U) by w∗(u) = 1 if
u = u∗ and w∗(u) = 0, if u 6= u∗. Then, by the definition of w∗ and part 1, for any
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w ∈P(U) ∑
u∈U

w∗(u)f(u) = max
u∈U

f(u) ≥
∑
u∈U

w(u)f(u)

from which the result follows.

What the equivalence between (2.36) and (2.37) means is that a decision maker
cannot receive a larger expected reward by randomizing over actions than by just
using a deterministic decision rule determined by (2.34). This argument establishes for
the one-period model that if d∗1 satisfies (2.34) and π∗ = (d∗1), then the optimal expected
total reward, denoted v∗(s), satisfies

v∗(s) = sup
π∈ΠMR

vπ(s) = max
π∈ΠMD

vπ(s) = vπ
∗
(s) (2.38)

for all s ∈ S. (Be sure you can identify each expression in (2.38) and distinguish what
it represents.) Recall that for a one-period problem there is no distinction between
history-dependent and Markovian policies.

Putting this all together, we have demonstrated the following for a one-period
model:

1. There exists a Markovian deterministic policy π∗ = (d∗1) that is optimal in the
class of all policies.

2. The expected total reward of the optimal policy satisfies

vπ
∗
(s) =

∑
j∈S

p1(j|s, d∗1(s))(r1(s, d∗1(s), j) + r2(j))

= max
a∈As

{∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
.

3. To “solve” the one-period problem under the expected total reward criterion, we
compute v∗(s) for all s ∈ S as follows:

v∗(s) = max
a∈As

{∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
(2.39)

and choose d∗(s) as follows

d∗(s) ∈ arg max
a∈As

{∑
j∈S

p1(j|s, a)(r1(s, a, j) + r2(j))

}
(2.40)

Our goal in later parts of the book will be to generalize these ideas to more complex
models.
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2.5 A Two-State Model

In this section, we provide a simple concrete example that introduces basic model
components and notation, and previews calculations that will be seen later in the
book. We formulate this model as a finite horizon Markov decision process; we analyze
an infinite horizon version in later chapters. We assume the transition probabilities
and rewards are stationary, that is, they do not vary from decision epoch to decision
epoch.

Figure 2.6: Graphical representation of two-state model. Circles denote states, arcs
denote actions and the expressions in parentheses denote rewards and transition prob-
abilities, respectively. Zero probability transitions have been omitted.

Example 2.1. Consider the two-state model illustrated in Figure 2.6. In this
model, there are two states, and two actions to choose from in each state. Actions
a1,2 and a2,1 result in deterministic outcomes – when the decision maker chooses
these actions, transitions occur to a specified state with certainty. Consequently,
rewards rn(s1, a1,2, s1) and rn(s2, a2,1, s1) are superfluous since they correspond to
outcomes that cannot occur. We assume terminal rewards of 0. The formal for-
mulation follows.

Decision Epochs:
{1, 2, . . . , N}, N <∞

States:
S = {s1, s2}
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Actions:
As1 = {a1,1, a1,2}, As2 = {a2,1, a2,2}

Rewards: For n < N

rn(s1, a1,1, s1) = 5, rn(s1, a1,1, s2) = −5

rn(s1, a1,2, s1) = 0, rn(s1, a1,2, s2) = 5

rn(s2, a2,1, s1) = 0, rn(s2, a2,1, s2) = −5

rn(s2, a2,2, s1) = 20, rn(s2, a2,2, s2) = −10

rN(s1) = 0, rN(s2) = 0

Transition Probabilities: For n < N

pn(s1|s1, a1,1) = 0.8, pn(s2|s1, a1,1) = 0.2

pn(s1|s1, a1,2) = 0, pn(s2|s1, a1,2) = 1

pn(s1|s2, a2,1) = 0, pn(s2|s2, a2,1) = 1

pn(s1|s2, a2,2) = 0.4, pn(s2|s2, a2,2) = 0.6

2.5.1 A One-Period Model

Here, we illustrate calculations from Section 2.4 applied to Example 2.1. From (2.39),
we compute v∗(s) as

v∗(s1) = max{0.8× (5 + 0) + 0.2× (−5 + 0), 5 + 0} = max{3, 5} = 5

v∗(s2) = max{−5 + 0, 0.4× (20 + 0) + 0.6× (−10 + 0)} = max{−5, 2} = 2.

The first term in the maximums correspond to action ai,1, i = 1, 2 and the second term
in the maximums correspond to ai,2, i = 1, 2. Thus, from (2.40), we have d∗(s1) = a1,2

and d∗(s2) = a2,2. Observe that this calculation was particularly simple because the
terminal reward in each state equals 0. Exercise 6 asks you to explore the sensitivity
of the optimal decision to the terminal reward.

2.5.2 A Two-Period Model

Next, we wish to provide a concrete example of each type of policy. However, in a
one-period model, history-dependent and Markovian decision rules (and policies) are
the same since the history at decision epoch 1 is the same as the state at decision
epoch 1. Thus, to illustrate all of the different types of policies that are possible in our
two-state model, we now consider a two-period version of Example 2.1.
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Markovian Deterministic Policy πMD

Suppose π = (d1, d2), where

d1(s) =

{
a1,1, s = s1

a2,1, s = s2

and d2(s) =

{
a1,2, s = s1

a2,1, s = s2

(2.41)

In state s1, action a1,1 is chosen at the first decision epoch and a1,2 is chosen at the
second decision epoch. In contrast, if the state is s2, then action a2,1 is chosen at both
decision epochs.

Next, we compute the expected total reward generated by this policy π. Suppose
the process starts in state s1. Then a1,1 is chosen, which results in a self-transition
to state s1 with probability 0.8 and a transition to state s2 with probability 0.2. The
corresponding rewards for these transitions are 5 and −5, respectively. At epoch 2, if
the state is s1, then a1,2 is chosen and the system transitions to state s2 with certainty
and a reward of 5. This first sample path (s1 → s1 → s2), which occurs with probability
0.8, has a total reward of 5 + 5 = 10. If the state is s2 at epoch 2, then action a2,1 is
chosen, which results in a self-transition and a reward of −5. This second sample path
(s1 → s2 → s2), which occurs with probability 0.2, has a total reward of −5−5 = −10.
Since the terminal rewards are 0, the expected total reward of this particular Markov
deterministic policy π is 0.8(10) + 0.2(−10) = 6.

A similar set of calculations will show that if the process starts in state s2, the
expected total reward of policy π is −10. Finally, an initial probability distribution
that specifies the starting state as s1 with probability p and s2 with probability 1− p
would have an expected total reward of 16p − 10. Calculations similar to this will be
fundamental to analyzing partially observed MDP models in Chapter 9.

Markovian Randomized Policy πMR

Suppose that at decision epoch n = 1, 2, in state s1, dn chooses action a1,1 with
probability qn,1 and action a1,2 with probability 1 − qn,1 and in state s2, dn chooses
action a2,1 with probability qn,2 and action a2,2 with probability 1− qn,2. Then, in the
notation of Section 2.2.1, we have that for n = 1, 2,

wndn(s, a) =


qn,1, a = a1,1, s = s1

1− qn,1, a = a1,2, s = s1

qn,2, a = a2,1, s = s2

1− qn,2, a = a2,2, s = s2.

(2.42)

This set of probabilities can be expressed in matrix form as

W n
dn =

[
qn,1 1− qn,1 0 0
0 0 qn,2 1− qn,2

]
, (2.43)
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where rows correspond to states and columns correspond to actions. In this notation,
the Markovian deterministic policy from the previous subsection can be represented as

w1
d1

=

[
1 0 0 0
0 0 1 0

]
and w2

d2
=

[
0 1 0 0
0 0 1 0

]
.

Computing the expected total reward of a Markovian randomized policy is similar
to the Markovian deterministic case, except that an additional expectation has to be
taken with respect to the probability distribution over action selection described by
wndn(s, a).

History-dependent deterministic policy πHD

Suppose π = (d1, d2), where

d1(h) =

{
a1,1, h = s1

a2,1, h = s2

and d2(h) =


a1,2, h = (s1, a1,1, s1)

a2,1, h = (s1, a1,1, s2)

a2,2, h = (s2, a2,1, s2)

(2.44)

For this policy, the choice action depends on the entire history. In epoch 1, the
history is simply the initial state. But in epoch 2, the history includes the initial state,
the first action chosen, and then the subsequent state. If the state is s1 at epoch 2,
there is only one way for this to happen, given d1 (initial state s1 with action a1,1).
However, there are two histories that lead to s2 at epoch 2. Thus, the action chosen in
state s2 at epoch 2 depends on whether the process started in s1 or s2: starting in s1

leads to choosing action a2,1, otherwise a2,2. Notice that if the policy selects action a2,1

for the history (s2, a2,1, s2), then this policy coincides with the Markovian deterministic
policy described previously.

History-dependent randomized policy πHR

Suppose at the first decision epoch, the randomized decision rule is described by the
following probability distribution:

w1
d1

(h, a) =


q1,1, a = a1,1, h = s1

1− q1,1, a = a1,2, h = s1

q1,2, a = a2,1, h = s2

1− q1,2, a = a2,2, h = s2.

(2.45)

In state s1, action a1,1 is chosen with probability q1,1 and action a1,2 is chosen with
probability 1 − q1,1. In state s2, action a2,1 is chosen with probability q1,2 and action
a2,2 is chosen with probability 1− q1,2.

At the second decision epoch, there are up to eight histories to consider, since
there are two states and two actions in each state. However, a1,2 and a2,1 result in
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deterministic transitions to state s2, so two of the eight histories are impossible. The
remaining six are listed below:

h1 := (s1, a1,1, s1)

h2 := (s1, a1,1, s2)

h3 := (s1, a1,2, s2)

h4 := (s2, a2,1, s2)

h5 := (s2, a2,2, s1)

h6 := (s2, a2,2, s2)

Given these possible histories at the second decision epoch, a randomized decision rule
can be written as

w2
d2

(h, a) =

{
q2,i, a = a1,1, h = hi

1− q2,i, a = a1,2, h = hi
(2.46)

for i ∈ {1, 5} and

w2
d2

(h, a) =

{
q2,i, a = a2,1, h = hi

1− q2,i, a = a2,2, h = hi
(2.47)

for i ∈ {2, 3, 4, 6}.

Stationary deterministic policy πSD

Suppose π = (d, d), where

d(s) =

{
a1,1, s = s1

a2,1, s = s2

(2.48)

This policy uses the same decision rule in both decision epochs. It is similar to the
Markovian deterministic policy above, except that if the system is in state s1 at epoch
2, the SD policy chooses action a1,1, whereas the MD policy chooses a1,2.

Stationary randomized policy πSR

The Markovian randomized policy above can be transformed into a stationary random-
ized policy π = (d, d) by simply omitting its dependence on n, for example:

wd(s, a) =


q1, a = a1,1, s = s1

1− q1, a = a1,2, s = s1

q2, a = a2,1, s = s2

1− q2, a = a2,2, s = s2.

(2.49)

This policy has a stationary probability distribution of choosing action a1,1 versus
a1,2 when the system is in state s1, and similarly for when the state is s2.
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2.6 Bibliographic Remarks

The expression “Markov decision process” originates with Bellman [1957]. His com-
prehensive book formulates a wide range of problems as Markov decision processes and
introduces many of the basic concepts including states, actions, transition probabili-
ties and optimality equations. Antecedents include Wald [1947] on statistical decision
models, Massé [1946] and Gessford and Karlin [1958] on reservoir management and
Shapley [1953] on stochastic games.

Subsequently the book Howard [1960], which was based on his MIT doctoral dis-
sertation, discussed the average and discounted reward model, developed the policy
improvement algorithm (see Chapter 5) for both and provided a range of colorful ap-
plications.

Inspired by Howard’s book, Blackwell [1962] provides a rigorous analysis of infinite
horizon, finite state and action, discounted and undiscounted Markov decision process.
He formulates the model using matrix notation and establishes the optimality of sta-
tionary policies in a discounted model by showing that policy improvement converges.
However, the most significant results in this paper concern the existence and compu-
tation of optimal policies as the discount factor approaches 1 in which case the limit
in (2.24) diverges. To do so, he uses Markov chain results from Kemeny and Snell
[1960] concerning the fundamental matrix to relate the average and discounted cases
through a partial Laurent expansion. This chain of arguments was subsequently refined
in A.F. Veinott [1969] where he introduces the concepts of n-discount optimality.

Several noteworthy books include Derman [1970], Bertseksas [2012], Powell [2007]
and Sutton and Barto [2018]. Puterman [1994] further elaborates on historical issues.

2.7 Exercises

1. Consider the following three-state model with S = {s1, s2, s3}, actions Asi =
{ai,1, ai,2} for i = 1, 2, 3, rewards rn(si, ai,1, sj) = i2 − j2, rn(si, ai,2, sj) = j2 − i2
for n = 1, 2, . . . , N − 1 and rN(si) = −i3. Transition probabilities are given
by pn(si|si, ai,1) = 1 − 1/i, pn(sj|si, ai,1) = 1/(2i) for j 6= i and pn(si|si, ai,2) =
1− 1/(i+ 1), pn(sj|si, ai,2) = 1/(2(i+ 1)) for j 6= i for n = 1, 2, . . . , N .

(a) Provide a graphical representation of the model as in Figure 2.6.

(b) Represent a one- and two-period model as a decision tree when P (X1 =
si) = γ(si) = 1

3
for i = 1, 2, 3. Compute the total reward of each path

through the tree.

(c) In a one-period model, find the distribution of X2 for each possible initial
state s1, s2, s3 when the deterministic decision rule d(si) = ai,1 is used is
used at decision epoch 1.

(d) Use (2.32) to find the expected total reward vπ(s) for each s ∈ S in a one-
period model for the policy π that uses the above decision rule d at decision
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epoch 1.

(e) In a one-period model, find the distribution of X2 for each possible ini-
tial state s1, s2, s3 when the randomized decision rule d′ with distribution
P (d′(si) = ai,1) = 1 − P (d′(si) = ai,2) = e−0.5i for i = 1, 2, 3 is used at
decision epoch 1.

(f) Use an appropriate generalization of (2.32) to find the expected total reward
vπ
′
(s) for each s ∈ S in a one-period model for the policy π′ that uses the

above decision rule d′ at decision epoch 1. (Hint: Use the expression in
brackets in (2.36).)

(g) Find the optimal policy in a one-period model using (2.39) and (2.40).

2. Using 5000 replications of Algorithm 1, simulate the total reward for the policies
π and π′ from Exercise 1 when N = 2.

(a) Estimate the expected total reward of each policy and compare your results
to those in Exercise 1.

(b) Provide histograms of your estimates and comment on their shape and any
differences you observe between the histograms of π and π′.

(c) Compute the standard deviation and 95th percentile of the total returns for
each policy. Interpret these quantities verbally and note why we might be
interested in such quantities.

(d) Suppose we measure the value of a reward stream (R1, R2) by multiplicative
utility eγR1eγR2 and compare policies on the basis of their expected utility.
Repeat parts (a) to (c) above using this utility function.

3. Construct a deterministic and randomized history-dependent policy for a two-
period version of the model in Example 1.

4. Show that when π ∈ ΠMR, the sequence of state and action pairs is a discrete
time Markov Chain. Devise an example that shows that when π ∈ ΠHR, the
sequence may not be Markov Chain.

5. Construct an example where an epoch-dependent state space Sn is appropriate
(i.e., where using S = ∪nSn would unnecessarily enlarge the state space at each
decision epoch). Hint: consider a shortest path problem.

6. Write out (2.39) and (2.40) for the one-period version of the two-state problem
in which r2(s1) = c1 and r2(s2) = c2. Plot the optimal policy as a function of the
terminal rewards c1 and c2.

7. Show that expression in (2.27) is equal to vπλ(s). Hint: interchange the order of
summation with justification.
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8. *Consider the following deterministic model. Let S = {s1, s2}, As1 = {a1,1, a1,2}, As2 =
{a2,1, a2,2}, r(s1, a1,1) = r(s1, a1,2) = 2, r(s2, a2,1) = r(s2, a2,2) = −2, and p(s1|s1, a1,1) =
p(s2|s1, a1,2) = p(s1|s2, a2,1) = p(s2|s2, a2,2) = 1.

(a) Provide a graphical representation of the model as in Figure 2.6.

(b) Show that for each stationary policy π and each state s ∈ S that the fol-
lowing limit exists

lim
N→∞

1

N
Eπ

[
N∑
n=1

r(Xn, Yn) |X1 = s

]
. (2.50)

(c) Consider a history-dependent policy π that when the initial state is s1

chooses action a1,1 for one period, then chooses a1,2 so that the system
proceeds to s2 and then chooses action a2,2 so the system remains in s2 for
three periods,at which point it chooses action a2,1 so that the system returns
to s1 and then chooses action a1,1 so that it stays in state s1 for 32 = 9 pe-
riods and then chooses actions so that it proceeds to s2 and remains there
for 33 = 27 periods and so forth.

Show that for π the limit in (2.50) does not exist by showing that

lim inf
N→∞

1

N
Eπ

[
N∑
n=1

r(Xn, Yn) |X1 = s

]
6= lim sup

N→∞

1

N
Eπ

[
N∑
n=1

r(Xn, Yn) |X1 = s

]
.




